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Abstract. A recent trend in computer science and related fields is gen-
eral purpose computing on graphics processing units (GPUs), which
can yield impressive performance. With multiple cores connected by
high memory bandwidth, today’s GPUs offer resources for non-graphics
parallel processing. This article provides a brief introduction into the
field of GPU computing and includes examples. In particular compu-
tationally expensive analyses employed in financial market context are
coded on a graphics card architecture which leads to a significant re-
duction of computing time. In order to demonstrate the wide range of
possible applications, a standard model in statistical physics – the Ising
model – is ported to a graphics card architecture as well, resulting in
large speedup values.

1 Introduction

In computer science applications and diverse interdisciplinary fields of science such as
computational physics or quantitative finance, the computational power requirements
have continuously increased with time. One prominent example is high-frequency
trading (HFT) which is focused on automatic trading decisions. Decisions to buy
or to sell financial assets are made by computer algorithms running on computer
systems of an exchange member. Such an algorithm analyzes the flow of incoming in-
formation received from the exchange system. Information includes new transactions
taking place with their corresponding transaction prices and transaction volumes, but
in some systems also order submission, order modification and order deletion events
of other exchange members. If a trading algorithm decides to submit a buy or sell
order to the exchange system, then within a few milliseconds this information is sent
from exchange member’s system to the central exchange server which is responsible
for matching offer and demand. The exchange server responds with a confirmation
message. The time between order submission and receipt of confirmation is referred
to as round-trip time (RTT). To minimize RTTs, exchange members made an effort
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Fig. 1. (Color online) Stock market related RTT estimates for major cities in the world.

to find locations for their computer infrastructure which are as close as possible to
the central server of the exchange. A longer distance causes a longer RTT of the in-
formation based on the finite speed of light and performance losses in communication
components such as routers. Considering communication via public internet, rough
RTTs estimates are shown in Fig. 1.

An optimized solution is given by placing the own computer system in the com-
puter center of the exchange which is offered by a few stock and derivative exchanges.
Using such a co-location service, RTTs of less than 5 milliseconds can be realized. How-
ever, typical time intervals between individual transactions are still significant larger
– the average interval between transactions for the German DAX future (FDAX)
contract traded at the European Exchange (EUREX) was roughly 1.25 seconds in
December 2008 [1]. Thus, an equally important question pervades the minds of high-
frequency traders: Once you are satisfied with the RTT to the exchange system, how
do you use efficiently the time between transactions? That’s the motivation for apply-
ing concepts from high performance computing which include also graphical process-
ing units (GPUs), a processor that has hundreds of processing cores, compared to
the typical four- to 12-core central processing units (CPUs). The GPU originally was
developed to render high-resolution details for computer games and became recently
available for non-graphical use satisfying huge computational needs.

Such computing requirements, which can also be found in various interdiscipli-
nary computer sciences such as computational physics (e.g., Monte Carlo- and mole-
cular dynamics simulations [2–4] or stochastic optimization [5]) make the use of high
performance computing resources. This includes recent multi-core computing solu-
tions based on a shared memory architecture, which are accessible by OpenMP [6]
or MPI [7] and can be found in recent personal computers. Furthermore, distributed
computing clusters with homogeneous or heterogeneous node structures are available
in order to parallelize a given algorithm by separating it into various sub-algorithms.

In addition, general purpose computing on graphics processing units (GPGPU)
is becoming an established pillar in computer science and related fields, which can
yield impressive performance. Today, we can find a large community of GPU comput-
ing developers. Many of them have reported significant speedup of their applications
with GPU computing – 10 to 100 times faster. Applications have already been re-
alized in signal processing [8–10], gravitational lensing in astronomy [11], astronomy
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in general [12–14], computational chemistry [15–17], chemical physics [18], compu-
tational physics [19–30], geophysics [31], biology [32,33], computational biology [34],
bioinformatics [35–37], biomedicine [38–40], medical physics [41–46], medical image
analysis [47], electromagnetic scattering problems [48], computational electromagnet-
ics [49–53], magnetics [54,55], neural networks [56], pattern recognition [57], genetic
programming [58], visualization [59–61], graph drawing [62], and computer science in
general [63–71].
With multiple cores connected by high memory bandwidth, today’s GPUs offer re-

sources for non-graphics processing. In the beginning, GPU programs used C-like pro-
gramming environments for kernel execution such as OpenGL shading language [72]
or C for graphics (Cg) [73]. The common unified device architecture (CUDA) [74] is a
conventional programming approach making use of the unified shader design of recent
GPUs from NVIDIA corporation. The programming interface allows for implement-
ing an algorithm using the standard C programming language without any knowledge
of the native programming environment. A comparable concept “Close To the Metal”
(CTM) [75] was introduced by Advanced Micro Devices Inc. for ATI graphics cards.
The computational power of consumer graphics cards roughly exceeds that of a CPU
by 1–2 orders of magnitude. A conventional CPU nowadays provides a peak perfor-
mance of roughly 20 × 109 floating point operations per second (FLOPS) [3]. The
consumer graphics card NVIDIA GeForce GTX 280 reaches a theoretical peak per-
formance of 933× 109 FLOPS. If one were to try to realize the computational power
of one GPU with a cluster of several CPUs, a much larger amount of electrical power
would be required. A GTX 280 graphics card exhibits a maximum power consumption
of 236 W [76], while a recent Intel CPU consumes roughly 100 W. In the meantime,
NVIDIA released already the next generation of GPUs – the NVIDIA GTX 400 series,
which is roughly two times faster than the previous generation.
This article covers a short introduction into the field of GPU computing and pro-

vides introductory examples. In particular computationally expensive analysis proce-
dures employed in financial market context are coded on a graphics card architecture
which leads to a significant reduction of computing time. Applications include the
analysis of general empirical features of financial market time series which are called
empirical stylized facts. In order to demonstrate the wide range of possible applica-
tions, a standard model in statistical physics, the Ising model, is ported to GPUs as
well, resulting in large speedup values.
We apply this general-purpose graphics processing unit (GPGPU) technology to

methods of time series analysis, which includes determination of the Hurst expo-
nent and equilibrium autocorrelation function – well-known empirical stylized facts
of financial markets. Furthermore, we compare the recent GPU generation with the
previous one. All methods are applied to a high frequency data set of the Euro-
Bund futures (FGBL) contract and FDAX contract traded at EUREX. In addition,
we demonstrate the wide range of possible applications for GPU computing. Thus,
we explain how a standard model in statistical physics – the Ising model – can be
ported to a graphics card architecture. We will cover both a single GPU as well as a
multi-GPU environment.
The remaining parts of this article are organized as follows. In Sec. 2, a brief

overview of key facts and properties of the GPU architecture is provided in order to
clarify implementation constraints for the following sections. This section provides a
very simple introductory example of code as well. GPU accelerated analyses of finan-
cial market data – the Hurst exponent estimation and the equilibrium autocorrelation
function – is covered in Sec. 3. In two subsections, the performance of the GPU code
as a function of parameters is first evaluated for a synthetic time series and compared
to the performance on a CPU. Then the time series methods are applied to a financial
market time series followed by a discussion of numerical errors. In Sec. 4, we explain
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Fig. 2. (Color online) Schematic visualization of the grid of thread blocks for a two dimen-
sional thread and block structure.

how we can use GPUs for Monte Carlo simulations of the Ising model. Two and three
dimensional square lattice Ising model simulations with single-spin-flips dynamics are
coded in CUDA before we demonstrate multi-spin coding and multi-GPU approaches.
Section 5 summarizes our overview of GPU computing.

2 GPU device architecture

In order to provide and discuss information concerning implementation details on a
GPU for time series analysis methods, key aspects of the GPU device architecture
are briefly summarized in this section. As mentioned in the introduction, we use
the compute unified device architecture (CUDA), which allows for implementation of
algorithms using standard C with CUDA specific extensions. Thus, CUDA issues and
manages computations on a GPU as a data-parallel computing device.
The graphics card architecture used in recent GPU generations is built around a

scalable array of streaming multiprocessors [74]. One such multiprocessor contains,
amongst others, eight scalar processor cores, a multi-threaded instruction unit, and
shared memory, which is located on-chip. When a C program using CUDA exten-
sions and running on the CPU invokes a GPU kernel, which is a synonym for a
GPU function, many copies of this kernel – known as threads – are enumerated and
distributed to the available multiprocessors, where their execution starts. For such
an enumeration and distribution, a kernel grid is subdivided into blocks and each
block is subdivided into various threads as illustrated in Fig. 2 for a two-dimensional
thread and block structure. The threads of a thread block are executed concurrently
in the vacant multiprocessors. In order to manage a large number of threads, a single-
instruction multiple-thread (SIMT) unit is used. A multiprocessor maps each thread
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Fig. 3. (Color online) Schematic visualization of a GPU multiprocessor with on-chip shared
memory.

to one scalar processor core and each scalar thread works independently of all the
others. Threads are created, managed, scheduled, and executed by this SIMT unit in
groups of 32 threads. Such a group of 32 threads forms a warp, which is executed on
the same multiprocessor. If the threads of a given warp diverge via a data-induced
conditional branch, each branch of the warp is executed serially and the processing
time of this warp consists of the sum of the branches’ processing times.
As shown in Fig. 3, each multiprocessor of the GPU device contains several local

32-bit registers per processor, memory which is shared by all scalar processor cores
in a multiprocessor. Furthermore, constant and texture cache are available, which
is also shared on the multiprocessor. In order to allow for reducing the number of
involved multiprocessors, the slower global memory can be used, which is shared
among all multiprocessors and is also accessible by the C function running in the
CPU. Please note, that the GPU’s global memory is still roughly 10 times faster
than current main memory of personal computers. Detailed specifications of the con-
sumer graphics cards 8800 GT and GTX 280 used in this study can be found in
Table 1. Furthermore note that former GPU devices only support single-precision
floating-point operations. Newer devices starting with the GTX 200 series also sup-
port double-precision floating-point numbers. However, each multiprocessor features
only one double-precision processing core and so, the theoretical peak performance is
significantly reduced for double-precision operations. Further informations about the
GPU device properties and CUDA can be found in [74].
Figure 4 provides an introductory example. This example is based on the situation

that two arrays a and b which contain n entries are stored in the global memory of
the GPU device. The code of the CPU function is executed on the CPU. The code
of the GPU function is executed on the GPU device. First, we initialize the three
variables n, n blocks, and n threads. Variable n contains the number of entries in
both array. Variable n blocks defines how many blocks we will start on the GPU.
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Table 1. Key facts and properties of the applied consumer graphics cards. The theoret-
ical acceleration factor between GeForce 8800 GT and GeForce GTX 280 is given by the
difference in number of cores × clock rate. The GTX 480 became recently available.

GeForce GeForce GeForce
8800 GT GTX 280 GTX 480

Global memory 512 MB 1024 MB 1536 MB
Number of multiprocessors 14 30 15
Number of cores 112 240 480
Constant memory 64 kB 64 kB 64 kB
Shared memory per block 16 kB 16 kB 48 kB
Warp size 32 32 32
Clock rate 1.51 GHz 1.30 GHz 1.40 GHz

//GPU func t i on i s execu ted on the GPU
g l o b a l void gpu funct ion ( int n , f loat ∗ a , f loat ∗ b) {

//Determine g l o b a l index
int i = threadIdx . x + blockIdx . x ∗ blockDim . x ;

//Determine array element
i f ( i < n) b [ i ] += a [ i ] ∗ a [ i ] ;

}

//CPU func t i on i s execu ted on the CPU
h o s t void cpu func t i on ( ) {

//Parameters
int n = 128 ∗ 128 ;
int n b locks = 128 ;
int n threads = 128 ;

// F i r s t c a l l o f the GPU func t i on
gpu funct ion<<<n blocks , n threads >>>(n , a , b ) ;

//Contro l comes back to CPU

//Second c a l l o f the GPU func t i on wi th modi f i ed parameters
gpu funct ion<<<n b locks /2 , n threads∗2>>>(n , a , b ) ;

Fig. 4. Source code of an introductory example.

Variable n threads defines how many threads will be started in each GPU block.
The call gpu function invokes the GPU kernel. In addition to the number of blocks
and number of threads, we pass the number of array entries and pointers to both ar-
rays to the GPU kernel. Thus, each process on the GPU can calculate its own global
index using the inbuilt variables threadIdx.x (Thread ID), blockIdx.x (Block ID),
and blockDim.x (number of started blocks). With this global index, each thread on
the GPU updates one entry of array b with the squared value of the corresponding
entry in array a. If more threads than existing array entires are started then the if
statement ensures that only existing entries are changes. After updating all array
entries, the control comes back to the CPU – the only way to set a global synchro-
nization point. Threads within a block can be synchronized by the special command
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syncthreads(). The second call of the GPU function causes the change of all array
entries as well. Only the organization of blocks and threads changed. Information
about optimal settings can be found in [74].

3 Financial data analysis on GPUs

3.1 Hurst exponent

The Hurst exponent H [77,78] provides detailed information on the relative tendency
of a stochastic process. A Hurst exponent of H<0.5 indicates an anti-persistent be-
havior of the analyzed process, which means that the process is dominated by a mean
reversion tendency. H>0.5 mirrors a super-diffusive behavior (persistent behavior) of
the underlying process. Large values tend to be followed by large values, small values
by small values. If the deviations of the current values of the time series from their
mean value are independent, which corresponds to a random walk behavior, a Hurst
exponent of H = 0.5 is obtained.
The Hurst exponent H was originally introduced by Harold Edwin Hurst [79], a

British government administrator. He studied records of the Nile river’s volatile rain
and drought conditions and noticed interesting coherences for flood periods. Harold
Edwin Hurst observed in the eight centuries of records that there was a tendency
for a year with good flood condition to be followed by another year with good flood
conditions and vice versa. Nowadays, the Hurst exponent is well studied in context
of financial markets [80–84]. Typically, an anti-persistent behavior can be found on
short time scales due to the non-zero gap between offer and demand. On medium
time scales, a super-diffusive behavior can be detected [82]. On long time scales, a
diffusive regime is reached, due to the law of large numbers.
For a time series p(t) with t ∈ {1, 2, . . . , T}, the time lag dependent Hurst exponent

Hq(Δt) can be determined by the general relationship

〈|p(t+Δt)− p(t)|q〉1/q ∝ ΔtHq(Δt) (1)

with the time lag Δt � T and Δt ∈ N. The brackets 〈. . .〉 denote the expectation
value. Apart from Eq. (1), there are also other calculation methods, e.g., rescaled
range analysis [77]. We present the Hurst exponent determination implementation
on a GPU for q = 1 and use H(Δt) ≡ Hq=1(Δt). The process to be analyzed is a
synthetic anti-correlated random walk, which was introduced in [80]. This process
emerges from the superposition of two random walk processes with different time
scale characteristics. Thus, a parameter dependent negative correlation at time lag
one can be observed. As a first step, one has to allocate memory on the GPU device’s
global memory for the time series, intermediate results, and final results. In a first
approach, the time lag dependent Hurst exponent is calculated up to Δtmax = 256.
In order to simplify the reduction process of the partial results, the overall number
of time steps T has to satisfy the condition

T = (2α + 1) ·Δtmax, (2)

with α being an integer number called the length parameter of the time series. The
number of threads per block – known as block size – is equivalent to Δtmax. The array
for intermediate results has length T as well, whereas the array for the final results
contains Δtmax entries. After allocation, the time series data have to be transferred
from main memory to the GPU’s global memory. When this step is completed, the
main calculation part can start. As illustrated in Fig. 5 for block 0, each block,
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Fig. 5. (Color online) Schematic visualization of the determination of the Hurst exponent
on a GPU architecture for T = 32 + 4 and Δtmax = 4. The calculation is split into various
processing steps to ensure that their predecessors are completed.

which contains Δtmax threads each, loads Δtmax data points of the time series from
global memory to shared memory. In order to realize such a high-performance loading
process, each thread1 loads one value and stores this value in the array located in
shared memory, which can be accessed by all the threads of a block. Analogously, each
block also loads the next Δtmax entries. In the main processing step, each thread is in
charge of one specific time lag. Thus, each thread is responsible for a specific value of
Δt and summarizes the terms |p(t+Δt)− p(t)| in the block subsegment of the time
series. As the maximum time lag is equivalent to the maximum number of threads and
as the maximum time lag is also equivalent to half of the data points loaded per block,
all threads have to sum the same number of addends resulting in a uniform workload
in the graphics card. However, as it is only possible to synchronize threads within a
block, and native block synchronization does not exist, partial results of each block
have to be stored in block-dependent areas of the array for intermediate results, as
shown in Fig. 5. The termination of the GPU kernel function ensures that all blocks
are executed. In a post processing step, the partial arrays have to be reduced. This
is realized by a binary tree structure, as indicated in Fig. 5. After this reduction, the
resulting values can be found in the first Δtmax entries of the intermediate array and a
final processing kernel is responsible for normalization and gradient calculation. The
source code of these GPU kernel functions can be found in Fig. 6.
For the comparison between CPU and GPU implementation, we use an Intel Core

2 Quad CPU (Q6700) with 2.66GHz and 4096 kB cache size, of which only one core
is used. The standard C source code executed on the host is compiled with the gcc
compiler (version 4.2.1). The results for Δtmax = 256 and the consumer graphics card
8800GT can be found in Fig. 7. The acceleration factor β, which is shown in the inset,
reaches a maximum value of roughly 40, and is determined by the relationship

β =
Total processing time on CPU

Total processing time on GPU
. (3)

1 Thread and block IDs are accessible in standard C language via built-in variables as we
have seen in the introductory example.
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g l o b a l void dev ( f loat ∗ in , f loat ∗ out ) {
s h a r e d f loat i n s [ 2∗BLOCK SIZE ] ;
s h a r e d f loat out s [BLOCK SIZE ] ;

i n s [ threadIdx . x]= in [ b lockIdx . x∗BLOCK SIZE+threadIdx . x ] ;
i n s [BLOCK SIZE+threadIdx . x]=

in [BLOCK SIZE+blockIdx . x∗BLOCK SIZE+threadIdx . x ] ;
ou t s [ threadIdx . x ]=0;

sync th r ead s ( ) ;
for ( int t =0; t<BLOCK SIZE;++t ) {

out s [ threadIdx . x]+=fabs ( i n s [ t+threadIdx . x]− i n s [ t ] ) ;
}

sync th r ead s ( ) ;
out [ b lockIdx . x∗BLOCK SIZE+threadIdx . x]= out s [ threadIdx . x ] ;

}

g l o b a l void dev po s tp ro c e s s i ng ( f loat ∗ in , int o f f s e t ) {
s h a r e d f loat i n s [ 2∗BLOCK SIZE ] ;

i n s [ threadIdx . x]= in [2∗ blockIdx . x∗ o f f s e t+threadIdx . x ] ;
i n s [BLOCK SIZE+threadIdx . x]=

in [2∗ blockIdx . x∗ o f f s e t+o f f s e t+threadIdx . x ] ;
s ync th r ead s ( ) ;

i n s [ threadIdx . x]= i n s [ threadIdx . x]+ i n s [BLOCK SIZE+threadIdx . x ] ;
in [ 2∗ blockIdx . x∗ o f f s e t+threadIdx . x]= i n s [ threadIdx . x ] ;

}

g l o b a l void d e v f i n a l p r o c e s s i n g ( f loat ∗ in , f loat ∗ out ,
int i n s i z e ) {

s h a r e d f loat i n s [BLOCK SIZE ] ;
i f ( threadIdx . x>0) i n s [ threadIdx . x]=

log10 ( in [ threadIdx . x ] / ( i n s i z e −BLOCK SIZE ) ) ;
s ync th r ead s ( ) ;

i f ( threadIdx . x>1) out [ threadIdx . x]=
( i n s [ threadIdx . x]− i n s [ threadIdx . x−1])/
( log10 ( ( f loat ) ( threadIdx . x))− l og10 ( ( f loat ) ( threadIdx . x −1) ) ) ;

Fig. 6. Source code of GPU kernel functions.

A smaller speed-up factor can be measured for small values of α, as the relative
fraction of allocation time and time for memory transfer is larger than the time
needed for the calculation steps. The corresponding analysis for the GTX 280 yields
a larger acceleration factor β of roughly 70. If we increase the maximum time lag
Δtmax to 512, which is only possible for the GTX 280, a maximum speed-up factor
of roughly 80 can be achieved, as shown in Fig. 8. This indicates that Δtmax = 512
leads to a higher efficiency on the GTX 280.
At this point, we can also compare the ratio between the performances of 8800

GT and GTX 280 for our application to the ratio of theoretical peak performances.
The latter is given as the number of cores multiplied by the clock rate, which amounts
to roughly 1.84. If we compare the total processing times on these GPUs for α = 15
and Δtmax = 256, we obtain an empirical performance ratio of 1.7. If we use the
acceleration factors for Δtmax = 256 on the 8800GT and for Δtmax = 512 on the
GTX 280 for comparison, we get a value of 2.
Following this performance analysis, we apply the GPU implementation to real

financial market data in order to determine the Hurst exponent of the Euro-Bund
futures contract traded on the European exchange (Eurex). We also validate the
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Fig. 7. (Color online) Processing times vs. length parameter α for the calculation of the
Hurst exponent H(Δt) on GPU and CPU for Δtmax = 256. The time series contains T =
(2α + 1) ·Δtmax data points. The consumer graphics card 8800 GT is used as GPU device.
The total processing time on the GPU can be broken into allocation time, time for memory
transfer, time for main processing, time for post processing, and time for final processing.
The acceleration factor β is shown in the inset. A maximum acceleration factor of roughly
40 can be obtained. Furthermore, at α = 9 there is a break of the slope of the acceleration
which is influenced by cache size effects.

accuracy of the GPU calculations by quantifying deviations from the calculation
on a CPU. The Euro-Bund futures contract (FGBL) is a financial derivative. As
noted earlier, a futures contract is a standardized contract to buy or sell a specific
underlying instrument at a proposed date in the future (called the expiration time of
the futures contract) at a specified price. The underlying instruments of the FGBL
contract are long-term debt instruments issued by the Federal Republic of Germany
with remaining terms of 8.5 to 10.5 years and a coupon of 6 percent. We use the
Euro-Bund futures contract with expiration time June 2007. The time series shown
in Fig. 9 contains 1,051,982 trades, recorded from 8 March 2007 to 7 June 2007. In
all presented calculations of the FGBL time series on the GPU, α is fixed to 11.
Thus, the data set is limited to the first T = 1, 049, 088 trades in order to fit the
data set length to the constraints of the specific GPU implementation. In Fig. 10,
the time lag dependent Hurst exponent H(Δt) is presented. On short time scales, the
well-documented anti-persistent behavior is detected. On medium time scales, small
evidence is observed, that the price process reaches a super-diffusive regime. For long
time scales the price dynamics tend to random walk behavior (H = 0.5), which is
also shown for comparison. The relative error

ε =

∣
∣
∣
∣

HGPU(Δt)−HCPU(Δt)
HCPU(Δt)

∣
∣
∣
∣

(4)

shown in the inset of figure 10 is smaller than one-tenth of a percent.
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Fig. 8. (Color online) Processing times for the calculation of the Hurst exponent H(Δt)
on GPU and CPU for Δtmax = 512. These results are obtained on the GTX 280. The total
processing time on GPU can also be slit into allocation time, time for memory transfer, time
for main processing, time for post processing, and time for final processing. A maximum
acceleration factor of roughly 80 can be reached, which is shown in the inset.

3.2 Equilibrium autocorrelation

The autocorrelation function is a widely used concept for determining dependencies
within a time series. The autocorrelation function is given by the correlation between
the time series and the time series shifted by the time lag Δt through

ρ(Δt) =
〈p(t) · p(t+Δt)〉 − 〈p(t)〉〈p(t+Δt)〉

√〈p(t)2〉 − 〈p(t)〉2√〈p(t+Δt)2〉 − 〈p(t+Δt)〉2 . (5)

For a stationary time series, Eq. (5) reduces to

ρ(Δt) =
〈p(t) · p(t+Δt)〉 − 〈p(t)〉2

〈p(t)2〉 − 〈p(t)〉2 , (6)

as the mean value and the variance stay constant for a stationary time series, i.e.,
〈p(t)〉 = 〈p(t+Δt)〉 and 〈p(t)2〉 = 〈p(t+Δt)2〉.
It can be observed that the autocorrelation function of price changes for a financial

time series exhibits a significant negative value for a time lag of one tick, whereas
it vanishes for time lags Δt>1. Furthermore, the autocorrelation of absolute price
changes or squared price changes, which is related to the volatility of the price process,
decays slowly [85,86]. In order to implement Eq. (6) on a GPU architecture, steps
similar to those covered in Sec. 3.1 are necessary. The calculation of the time lag
dependent part 〈p(t) · p(t +Δt)〉 is handled analogously to the determination of the
Hurst exponent on the GPU. The input time series, which is transferred to the GPU’s
main memory, does not contain prices but price changes. However, in addition one
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Fig. 9. (Color online) High frequency financial time series of the Euro-Bund futures contract
(FGBL) with expiration time June 2007 traded at the European Exchange (Eurex). The time
series contains 1,051,982 trades recorded from 8 March 2007 to 7 June 2007. The price is
shown in units of percent of par value. In bond markets, the par value (as stated on the
face of the bond) is the amount that the issuing firm is to pay to the bond holder at the
maturity date. In calculations of the FGBL time series on a GPU presented here, α is fixed
to 11. Thus, the data set is limited to the first T = 1, 049, 088 trades in order to fit the data
set length to the constraints of the specific GPU implementation.

needs the results for 〈p(t)〉 and 〈p(t)2〉. For this purpose, an additional array of length
T is allocated, in which a GPU kernel function stores the squared values of the time
series. Then, time series and squared time series are decomposed with the same binary
tree reduction process as in Sec. 3.1. However, as this procedure produces arrays of
length Δtmax, one has to sum these values in order to obtain 〈p(t)〉 and 〈p(t)2〉.
The processing times for determining the autocorrelation function for Δtmax = 256

on a CPU and a 8800 GT can be found in Fig. 11. Here we find that allocation and
memory transfer dominate the total processing time on the GPU for small values of
α and thus, only a fraction of the maximum acceleration factor β ≈ 33 (shown as
an inset) can be reached. Using the consumer graphics card GTX 280, we obtain a
maximum speed-up factor of roughly 55 for Δtmax = 256 and 68 for Δtmax = 512 as
shown in Fig. 12. In Fig. 13, the autocorrelation function of the FGBL time series
is shown. For a time lag of one, the time series exhibits a large negative autocorre-
lation, ρ(Δt = 1) = −0.43. In order to quantify deviations between GPU and CPU
calculations, the relative error ε is presented in the inset of Fig. 13. Note that small
absolute errors can cause relative errors of up to three percentage point because the
values ρ(Δt > 1) are close to zero.
For some applications, it is interesting to study larger maximum time lags of

the autocorrelation function. To do this on the basis of our GPU implementation,
the program code must be modified in the following way. So far, each thread was
responsible for a specific time lag Δt. In a modified implementation, each thread
would be responsible for more than one time lag in order to realize a maximum time
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Fig. 10. (Color online) Hurst exponent H(Δt) in dependence of time lag Δt calculated
on CPU and GPU. Additionally, the theoretical Hurst exponent of a random walk process
(H = 0.5) is included for comparison. One can clearly see the well-known anti-persistent
behavior of the FGBL time series on short time scales (Δt < 24 time ticks). Furthermore,
evidence is given that the process reaches a slightly super-diffusive region (H ≈ 0.525) on
medium time scales (24 time ticks < Δt < 27 time ticks). On long time scales, an asymptotic
random walk behavior can be found. In order to quantify deviations from calculations on a
CPU, the relative error ε (see main text) is presented for each time lag Δt in the inset. It is
typically smaller than 10−3.

lag, which is a multiple of the maximum number of 512 threads per block. This way,
one obtains a maximum speed-up factor of roughly 84 for Δtmax = 1024 using the
GTX 280. Further time series analysis methods will be ported to a GPU architecture
in the future including switching point analysis [1,87] and multivariate time series
analysis [88] as well as multi-agent based models [89].

4 Accelerated simulations in statistical physics

In the previous section, a GPU approach successfully applied in order to accelerate
time series analyses. We now port a standard model of statistical physics – the Ising
model – to the GPU architecture. The Ising model, which Ernst Ising studied in his
PhD [90], is a standard model of statistical physics and provides a simplified micro-
scopic description of ferromagnetism. It was introduced to explain the ferromagnetic
phase transition from the paramagnetic phase at high temperatures to the ferro-
magnetic phase below the Curie temperature TC . A large variety of techniques and
methods in statistical physics were originally formulated in terms of the Ising model
and then generalized and adapted to related models and problems [91]. Supported by
his results for a one dimensional spin chain, in which no phase transition occurs, Ising
initially proposed in his PhD thesis that there is also no phase transition in higher
dimensions which turned out to be a mistake. The Ising model on a two dimensional
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Fig. 11. (Color online) Processing times for the calculation of the equilibrium autocorre-
lation function ρ(Δt) on GPU and CPU for Δtmax = 256. The graphics card 8800 GT is
used as GPU device. The total processing time on GPU is broken into allocation time, time
for memory transfer, time for main processing, time for post processing, and time for final
processing. The acceleration factor β is shown as inset. A maximum acceleration factor of
roughly 33 can be obtained.

square lattice with no magnetic field was later analytically solved by Lars Onsager in
1944 [92]. The critical temperature at which a second order phase transition between
an ordered and a disordered phase occurs can be determined analytically for the two
dimensional model (TC = 2.269185 [92]). Despite much effort, an analytic solution for
the three dimensional Ising model still remains one of the great challenges in statis-
tical physics. However, computer simulations in combination with finite-size scaling
techniques [93–96] are able to determine TC ∼ 4.5115 [91] and the rest of the phase
diagram with good accuracy. Starting in 1944, the Ising model not only became pop-
ular in main stream physics but also in various interdisciplinary fields, in particular
in econophysics [1,97,98].

Critical phenomena, scaling and universality properties of Ising models have been
studied via Monte Carlo simulations for decades [91] with continuously improving
accuracy, these studies having directly benefited from the increasing availability of
computational resources. Such computing requirements, necessary not only for Monte
Carlo simulations but also for various other tasks in computational physics includ-
ing, e.g., molecular dynamics simulations [3,4,17,99] need a large amount of high
performance computing resources.

We employ the general purpose graphics processing unit technology for Monte
Carlo simulations of a two dimensional square lattice and a three dimensional cubic
lattice Ising models. Here we use a GeForce GTX 280 as GPU device if no other
graphics card is specified. We are using CUDA (version 2.0) in combination with an
NVIDIA graphics card driver (driver version 177.73). Early versions of the graphics
card drivers for the NVIDIA Geforce GTX 200 series exhibit a bug if a large part
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Fig. 12. (Color online) Processing times for the calculation of the equilibrium autocorre-
lation function ρ(Δt) on GPU and CPU for Δtmax = 512. The GTX 280 is used as GPU
device. A maximum acceleration factor of roughly 68 can be obtained.
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Fig. 13. (Color online) Equilibrium autocorrelation function ρ(Δt) in dependence of time lag
Δt calculated on CPU and GPU. One can clearly see the well-known negative autocorrelation
of financial time series at time lag Δt = 1 also in this figure. In order to quantify deviations
from calculations on a CPU, the relative error ε is presented for each time lag Δt in the
inset. The relative error is always smaller than 3× 10−2.
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of provided global memory is used. However, this problem has recently been fixed.
For the comparison between CPU and GPU implementations, we use an Intel Core
2 Quad CPU (Q6700) with 2.66 GHz and 4096 kB cache size, of which only one
core is used. The standard C source code executed on the host is compiled with
the gcc compiler with option -O3 (version 4.2.1). Other compilers in combination
with more sophisticated compiler options lead to even better processing times on the
CPU. In [19], a GPU based version of the Ising model has already been proposed.
This implementation was able to accelerate the Ising model computation by a factor
of three by migration to a GPU. In this article, we will demonstrate that a better
acceleration factor can be obtained. We demonstrate that our implementation works
by calculating the critical temperatures of the phase transitions in the two and three
dimensional Ising models.

4.1 Random number generation

An efficient method for creating random numbers is essential for Monte Carlo simu-
lations of the two dimensional ferromagnetic square lattice and the three dimensional
ferromagnetic cubic lattice Ising model on a GPU in Sec. 4.2 and Sec. 4.3. For this
purpose, we use an array of linear congruential random number generators (LCRNGs)
applying one of the oldest and best-known algorithms for generation of pseudo ran-
dom numbers [5]. Starting at a seed value x0,j , a sequence of random numbers xi,j
with i ∈ N of the LCRNG j can be obtained by the recurrence relation

xi+1,j = (a · xi,j + c) mod m (7)

where a, c, and m are integer coefficients. An appropriate choice of these coefficients
in Eq. (7) is responsible for the quality of the produced random numbers. We use
a = 1664525 and c = 1013904223 as suggested in [5]. In order to exploit the local 32-
bit architecture provided by the GPU device, the parameter of the modulo operation
m is set to 232 as, by construction, results on a 32-bit architecture are truncated to
the endmost 32 bits. Thus, if using signed integers, pseudo random numbers xi,j ∈
[−231; 231 − 1] can be obtained, which have to be normalized according to yi,j =
abs
(

xi,j/2
31
) ∼ 4.656612·10−10abs (xi,j) in order to get uniformly distributed pseudo

random numbers yi,j in the interval [0; 1]. As we use an entire set of linear congruential
random number generators in parallel, each LCRNG j of this array is initialized by
a random number obtained from a further LCRNG through

x0,j+1 = (16807 · x0,j) mod m (8)

with x0,0 = 1.
In the GPU implementation, each thread of a thread block handles its own linear

congruential random number generator. Denoting s as the number of involved thread
blocks and denoting σ as the number of threads per block, in a GPU kernel, values of
s · σ LCRNGs are determined in parallel. Each LCRNG calculates S pseudo random
numbers. Thus, a total of S · s · σ pseudo random numbers are created. In Fig. 14, a
comparison of processing times of the random number generation between calculation
on a GPU device and on a CPU core is presented for S = 104 and σ = 512 depending
on the number of involved blocks s. On the CPU, the same S · s · σ pseudo random
numbers are used for the sake of comparison. The acceleration factor β, which is
shown in the inset, is determined by the relationship

β =
Total processing time on CPU

Total processing time on GPU
(9)
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Fig. 14. (Color online) Processing times for the calculation of S · s · σ pseudo random
numbers on GPU and CPU for S = 104 and 512 threads per block in dependence of the
number of involved thread blocks s. The total processing time on GPU is divided into
allocation time, time for memory transfer, and for main processing. The acceleration factor
β is shown as inset. A maximum acceleration factor of roughly 130 can be obtained for
s = 30, which corresponds to the number of multiprocessors on our GPU device. Note that
the computation on the GPU becomes inefficient if s is not a multiple of the number of
multiprocessors on the gpu device because some multiprocessors are idle in the end of the
calculation (see inset).

as defined in one of the previous sections. A maximum acceleration factor β ∼ 130
is obtained for s = 30, which corresponds to the number of multiprocessors of the
NVIDIA GeForce GTX 280 consumer graphics card. Up to 30 groups of σ = 512 single
linear congruential random number generators can be executed concurrently at the
same time on this GPU device. If s is larger than 30, the 30 available multiprocessors
are able to execute only the first 30 blocks in parallel, such that the remaining groups
of σ = 512 single linear congruential random number generators have to be handled
in a second step. Thus, processing time on the GPU device is doubled when s = 31
is used instead of s = 30. Note that the computation on the GPU becomes inefficient
if s is not a multiple of the number of multiprocessors on the gpu device because
some multiprocessors are idle at the end of the calculation (see inset of Fig. 14). The
fraction of GPU processing time for allocation and memory transfer of the LCRNG
seed values can be neglected. Please note that there are many other possibilities
for implementing an efficient creation of pseudo random numbers on a GPU device.
In [3], e.g., an algorithm is presented for producing a set of pseudo random numbers in
parallel on a GPU device with a single linear congruential random number generator
which determines the set of numbers according to a serial rule. A CUDA based version
of the Mersenne Twister random number generator [100] is able to generate pseudo
random numbers in parallel as well.
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4.2 Two dimensional Ising model

In this section, we present an implementation of the two dimensional ferromagnetic
square lattice Ising model on a GPU which was originally introduced in [27]. The sim-
ple Ising model, which is one of the simplest lattice models, consists of an arrangement
of spins with are located on the sites of the lattice and which exhibit only the values
+1 and −1 [2]. These spins interact with their nearest neighbors on the lattice with
interaction constant J > 0. The Hamiltonian H for this model is given by

H = −J
∑

〈i,j〉
SiSj −H

∑

i

Si (10)

where Si = ±1 represents a spin at site i and H denotes the coupling to an external
magnetic field. We use a square lattice with n spins per row and column and peri-
odic boundary conditions. The lattice contains N = n2 spins. For the spin update,
the Metropolis criterion [101] is applied which is an obvious choice for a transition
probability satisfying the ‘detailed balance’ principle in the thermal equilibrium and
leading to the fastest dynamics for single spin flip simulations. In the expression
Pa(t)Wa→b = Pb(t)Wb→a for ‘detailed balance’, Pa(t) denotes the probability of the
system being in state a at time t and Wa→b the transition rate for the move a → b.
Denoting ΔH to be the energy difference between the two states a and b, which
is given through ΔH = Hb −Ha, the probability for the move a → b is given by
Wa→b = exp(−ΔH /kBT ) if ΔH > 0 and by Wa→b = 1 if ΔH ≤ 0. As a single
spin flip dynamics is applied, two successive states differ only by a single spin, such
that ΔH can be calculated as a local energy difference.
In the first step of the GPU implementation, one has to allocate memory on the

GPU device’s global memory for the two dimensional spin field and for the seed val-
ues of the LCRNGs. After a random initialization of the spin field on the CPU and
initialization of seed values as described in Sec. 4.1, spins and seeds are transferred to
the GPU’s global memory. The transition probability Wa→b depends on the temper-
ature T which has to be passed to the GPU kernel function. The Boltzmann constant
kB is fixed to 1 in all simulations. We use a zero field (H = 0) and J = 1.
It must be taken into account that for Monte Carlo trial moves to be executed in

parallel, the system has to be partitioned into non-interacting domains. Thus, for the
update process of the spin lattice, a checkerboard algorithm is applied, that is there is
a regular scheme for updating the lattice spin by spin. First all spins on the “white”
squares of the checkerboard are updated and then all spins on the “black” squares.
Please note that other methods for this updating process are also available (e.g.,
diverse cluster algorithms [102,103], which exhibit faster convergence). However, the
systematic scheme of the checkerboard algorithm is most suitable for demonstrating
the migration to the GPU architecture realizing noninteracting domains where the
Monte Carlo moves are performed in parallel. In fact, this partitioning for “real life”
problems is a significant challenge.
On a GPU device, it is only possible to synchronize threads within a block. A

native block synchronization does not exist. Therefore, only the termination of the
GPU kernel function ensures that all blocks were executed. We divide the spin update
process on the lattice into blocks on the GPU. In a single GPU kernel, only a semi-
lattice can be changed without creating conflicts.
The spin updating process is subdivided into threads and blocks as illustrated

in Fig. 15 for n = 16. The spin field is divided into strips of width 2. Each strip is
handled by one block and each thread is responsible for a square sub-cell of 2 × 2
spins in order to avoid idle threads. Thus, n/2 threads per block are necessary. A first
GPU kernel handles the update process of the first semi-lattice, i.e., in each block
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Fig. 15. (Color online) Schematic visualization of the implementation of a two dimensional
Ising model on a GPU for n = 16 spins per row. The 2D spin field is split in strips of 16× 2
spins each treated by a single block on the GPU. In each block, we use n/2 = 8 threads,
which are used for the spin update corresponding to the scheme presented on the right side
and described in the main text.

σ = n/2 threads accomplish steps (a) and (b) of Fig. 15. The termination of this GPU
kernel ensures that all blocks were executed and a second kernel can start in order
to accomplish steps (c) and (d). Each sub-cell (i.e., each thread in each block) has
access to its own LCRNG. As each thread in one GPU kernel function needs up to two
random numbers and as this array is also used after two semi-lattice updates for the
reduction process of partial energies or magnetizations of the Ising lattice, the seed
values or current random numbers are transferred at the beginning of a GPU kernel
to a shared memory array in order to take advantage of the increased memory speed.
After finishing of the updating steps (steps (b) and (d)) the current value is transferred
back to global memory. As CUDA does not provide native reduction functions for
treating partial results, this must be managed manually. For this purpose, the shared
memory array is used after step (d). A binary tree structure ensures a fast reduction
of the partial values within a block. These partial results of each block are stored at
block-dependent positions in global memory and finally transferred back to the host’s
main memory [30]. The final summation of the results of n/2 blocks is carried out by
the CPU. In Fig. 16, the processing times of the Ising model implementation on the
GPU are compared with an Ising model implementation on one CPU core. For the
largest system, n = 1024, an acceleration factor of roughly 60 could be achieved. For
very small systems, the acceleration factor is smaller than 1 because the GPU device
is not used efficiently for small thread numbers per block.
In order to verify the GPU implementation, it is insufficient to only compare val-

ues of energy and magnetization of a function of the temperature T between GPU
and CPU versions. A very sensitive test is given by the determination of the criti-
cal temperature of the Ising model. For this purpose, we use finite size scaling and
calculate the Binder cumulant [93], which is given in a zero field by

U4 (T ) = 1− 〈M(T )4〉
3〈M(T )2〉2 , (11)

with M denoting the magnetization of a configuration at temperature T and 〈. . .〉
being the thermal average. Near a critical point, finite size scaling theory predicts
the free energy and derived quantities such as magnetization being functions of linear
dimension L over correlation length ξ � (T − Tc)−ν . Therefore, moment ratios of
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Fig. 16. (Color online) Processing times for a two dimensional ferromagnetic square lattice
Ising model for a cooling down process. The temperature T ∈ [2.0; 3.0] is stepwise reduced by
the factor 0.99. In each temperature step, 100 sweeps are performed. The processing times
are shown in dependence of the number of threads per block which is related to the system
size by σ = n/2. The total processing time on GPU is divided into allocation time, time for
memory transfer, and time for main processing. The acceleration factor β is shown as inset.
A maximum acceleration factor of roughly 60 can be realized.

the magnetization like for example the Binder cumulant U4, become independent
of system size at the critical temperature. To test our implementation, we perform
several simulations close to the critical point for different linear dimensions of the
simulation box and determine U4. As shown in Fig. 17, the curves of the Binder
cumulants for various system sizes N = n2 cross almost perfectly at the critical
temperature derived by Onsager (Tc ≈ 2.269185) [92], indicated by a dashed line. Note
that single spin flips and parallelization schemes based upon them are not particularly
well-suited for the determination of critical properties because of critical slowing
down. Nevertheless, we are able to determine Tc with reasonable accuracy (Tc =
2.2692± 0.0002).

4.3 Three dimensional Ising model

In this section, the GPU implementation of the two dimensional ferromagnetic square
lattice Ising model is expanded to a three dimensional cubic lattice model version on
the GPU. In a first step, we allocate memory analogously as in Sec. 4.2. In addition,
the three dimensional spin field with N = n3 spins and the random number seeds
have to be transferred to the GPU device. In the three dimensional case, the spin
update process is also subdivided into threads and blocks. Now, the update scheme
illustrated in Fig. 18 for n = 16 is applied. The 3D spin field is split in cuboids of
2 × 2 × 16 spins each treated by a single block on the GPU. In each block, we use
n/2 = 8 threads, which are used for the spin update corresponding to the scheme
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Fig. 17. (Color online) Binder cumulant U4 in dependence of kBT for various numbers n of
spins per row and column of the two dimensional square lattice Ising model. n/2 corresponds
to the involved number of threads per block on the GPU implementation. The curves of the
Binder cumulants for various system sizes N = n2 cross almost perfectly at the critical
temperature derived by Onsager [92], which is shown additionally as a dashed line. In each
temperature step, the average was taken over 107 measurements.

presented on the right side of Fig. 18. A first GPU kernel handles the update process
of the first semi-lattice, i.e., in each block σ = n/2 threads accomplish steps (a), (b),
(c), and (d) of Fig. 18. The termination of this GPU kernel ensures that all blocks were
successfully executed and a second kernel can start in order to carry out steps (e), (f),
(g), and (h). Each sub-cell (i.e., each thread in each block) which is responsible for 8
spins in the 3D case has access to its own LCRNG. In Fig. 19, the processing times of
the three dimensional Ising model implementation on the GPU are compared with a
corresponding Ising model implementation on a single CPU core. The largest system
which can be realized on a GeForce GTX 280 in this way is n = 256. Global memory
size limits the Ising system size to this value. Thus, a maximum acceleration factor
of roughly 35 can be achieved.
In Fig. 20, the Binder cumulant for different system sizes N = n3 is presented as

a function of temperature T . The crossing point at TC ∼ 4.51 is in good agreement
with previous simulation results [91], according to which the critical temperature is
located at 4.5115 [95] and 4.5103 [96]. These values are shown as dashed lines in
Fig. 20.

4.4 Multi-spin coded 2D CPU implementation

For our extended CPU reference implementation2, we focus on a single spin-flip ap-
proach which performs well for large lattice sizes. Multi-spin coding refers to all

2 This extension using multi-spin coding was developed in collaboration with Benjamin
Block and Peter Virnau and is published in [24].
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Fig. 18. (Color online) Schematic visualization of the three dimensional ferromagnetic cubic
lattice Ising model implementation on a GPU for n = 16. The 3D spin field is split in cuboids
(shown left) of 2 × 2 × 16 spins each treated by a single block on the GPU. In each block,
we use n/2 = 8 threads, which are used for the spin update corresponding to the scheme
presented (shown right) and described in the main text.

techniques that store and process multiple spins in one unit of computer memory. In
CPU implementations, update schemes have been developed that allow for process-
ing more than one spin with a single operation [104–107]. We use a scheme which
encodes 32 spins into one 32-bit integer in a linear fashion. The 32-bit type is chosen
because register operations of current hardware perform fastest on this data type.
The key ingredient for an efficient update algorithm of these 32-bit patterns is to use
pre-computed bit patterns that encode the evaluations of the flip condition expression

r < exp(−ΔH /kBT ) (12)

for every single spin bit – the variate r is an independent and identically distributed
random number in [0, 1). Since there are only two possible energy differences ΔH
with ΔH > 0, two boolean arrays can encode the information of an evaluation
of the flip condition. For reasonable results, N. Ito [107] suggested to use a pool
of 222 to 224 Boltzmann patterns. We denote the two Boolean arrays “exp4” and
“exp8”. Our encoding is chosen such that a “1” is stored in exp4 if exp(−8J/kBT ) <
r < exp(−4J/kBT ) is satisfied and a “0” if not. A “1” is stored in exp8 if r <
exp(−8J/kBT ) is satisfied and a “0” if not. For every spin update, the Monte Carlo
simulation will choose a random pattern. To process a 32-bit spin pattern s0, neighbor
patterns s1, s2, s3, s4 have to be prepared which contain the neighbors of the i

th spin
at their ith digit.
Since the calculation is the same for every bit, it is convenient to look at just

one bit. The first step is to transform the spin variables into “energy variables” to
eliminate dependence on the initial state of s0.

in = s0ˆsn,∀n ∈ {1, 2, 3, 4} (13)

where “ˆ” denotes an XOR operation. Because of the special encoding of the Boltz-
mann patterns, the acceptance condition for each spin can be expressed in a simple
way:

i1 + i2 + i3 + i4 + 2 · exp8s + exp4s ≥ 2 (14)

where exp8s and exp4s denote the sth Boltzmann patterns that encode the spin
flip condition, and s is a random position in the pool. It is possible to evaluate
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Fig. 19. (Color online) Processing times for a three dimensional ferromagnetic cubic lattice
Ising model for a cooling process. The temperature T ∈ [4.0; 5.0] is gradually reduced by the
factor 0.99. In each temperature step, 100 sweeps are performed. The processing times are
shown in dependence of the number of threads per block which is related to the system size
by σ = n/2. The total processing time on the GPU is split into allocation time, time for
memory transfer, and time for main processing. The acceleration factor β is shown as inset.
A maximum acceleration factor of roughly 35 can be achieved.

this expression for all 32 bits in parallel by applying a sequence of bitwise boolean
operations [107].
As parallel updates are only allowed on non-interacting domains, an additional

bit mask has to be applied to the update pattern that only allows to flip each second
spin in parallel.

4.5 Multi-spin coded GPU implementation

4.5.1 Problems arising from a straightforward adaption

On GPUs, memory access is very costly compared to operations on registers. The
great advantage of multi-spin coding is that only one memory access is needed to
load several spins in parallel. The CPU implementation could be ported to a GPU
with a kernel that uses less than 16 registers. This allows optimal usage of the GPU
up to a maximum block size of 512 threads. Even though the update scheme presented
in Sec. 4.4 performs faster on the CPU compared to an implementation with integer
representations of each spin, a straightforward GPU port of this scheme is not optimal.
The reason for the poor performance is that parallel threads in one warp have

to access global memory in a random fashion which is very costly. The execution
speed can be improved by choosing only one random position per block and letting
all the threads in this block read the patterns linearly, starting from the chosen
starting position. However, this approach reduces the quality of the flip patterns. In
principle, this ansatz could be compensated for by using a significantly larger pool
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Fig. 20. (Color online) Binder cumulant U4 in dependence of kBT for various numbers n of
spins per row and column of the three dimensional Ising model on the simple cubic lattice.
n/2 corresponds to the involved number of threads per block on the GPU implementation.
The curves of the Binder cumulant for various system sizes N = n2 cross almost perfectly
at the critical temperature TC ≈ 4.51, which is in agreement with a selection of previous
simulation results which are presented as dashed lines. For each temperature step, the average
was taken over 106 measurements.

Table 2. Key facts and properties of the Tesla C1060 GPU[108].

Tesla C1060
Global memory 4096 MB
Streaming processor cores 240
Shared memory per block 16 KB
Clock rate 1.30 GHz
Memory clock 800 MHz
Maximal power consumption 187.8 W

of random numbers. Another option is to calculate the spin flip patterns on the fly
using a random number generator on the GPU instead of looking them up from
global memory. It turns out, however, that the sophisticated update scheme does not
longer benefit in this case. The performance of this implementation is compared in
Table 3. It should be emphasized that the quality of random numbers differs between
the implementations. In the next section, we present another update scheme that
works well on the GPU, and which prevents pitfalls with the quality of the random
numbers.
In this section, we use a NVIDIA Tesla C1060 as our CUDA enabled device,

which offers 4 GB of global memory, see Table 2. This memory can store a multi-spin
coded spin field of 100, 0002 spins on one GPU. The reference CPU used in tests in
Secs. 4.4, 4.5, and 4.6 is the Intel Xeon X5560 with a clock rate of 2.80 GHz and
8192 kB cache. The purpose of the CPU implementation is to have a fast and fair
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Table 3. Comparison at lattice size 4096 × 4096: CPU simple encodes one spin in one
integer, CPU multi-spin coding uses the efficient “multi-spin” update scheme presented in
section 4.4, multi-spin unmodified is a straightforward porting of this update to the GPU,
multi-spin coding on the fly uses the same scheme but calculates the update patterns at
each update step on the fly, and multi-spin coding linear determines one starting position
in the random number pattern in the pool per block, and lets the threads read the random
numbers linearly from that position on. The shared memory implementation (see Sec. 4.5.2)
provides random numbers with a better quality.

Spinflips per μs Relative speed
CPU simple 26.6 0.11
CPU multi-spin coding 226.7 1.00
shared memory 4415.8 19.50
multi-spin unmodified 3307.2 14.60
multi-spin coding on the fly 5175.8 22.80
multi-spin coding linear 7977.4 35.20
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Fig. 21. (Color online) The spin lattice is processed by a variable number of blocks (a),
where each block runs a variable number of threads (b). The threads update the spin lattice
in two steps, A and B, using two kernel invocations (c).

non-parallel reference implementation, not to benchmark a Core i7 CPU. Therefore,
only one core of the CPU is used.

4.5.2 Extraction into shared memory

The main goal of the implementation presented here is to reduce access to the global
memory of the GPU, which is extremely costly. The best performance without pre-
calculating flip patterns can be achieved by extracting the spins into shared memory
and performing the calculations on integer registers. The spin field on the graphics
card is encoded in quadratic blocks of 4×4 spins (hereafter referred to as “meta-spins”)
which can be stored as binary digits of one unsigned short integer (2 bytes), and thus
can be accessed by a single memory lookup. Single spin values can be extracted from
one meta-spin by using the expression

s[x, y] = (meta− spin&(1� (y ∗ 4+ x))) ∗ 2− 1
which returns a value of either −1 or 1. This is a slightly more complicated expression
than for a linear layout, but it makes sense for a multi-GPU implementation in which
border information has to be transferred between various GPUs (see Sec. 4.6). This
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Fig. 22. (Color online) (a) The way a kernel processes a 4 × 4 meta-spin. (b) Spins are
extracted into shared memory and an update pattern is created (c). (d) Afterwards, the new
spins are obtained using the update pattern (Spins on blue sites will be flipped, spins on
white sites will not be flipped), and written back to global memory.

approach accounts for the fact that each spin uses exactly one bit of memory. The
spin field is stored in global memory, which is expensive to access.

To process the spin field on the GPU, the spin field is subdivided into quadratic
subfields which can be processed by threads grouped into one block (see Fig. 21).
Each thread of this block processes a “meta-spin” of 4 × 4 spins. At the beginning
of a kernel, it retrieves 5 meta-spins from the global memory, namely its own and its
four neighboring “meta-spins” (Fig. 22(a)). This information is used to extract the
information for the 4 × 4 spins. Each thread will store the spin field of 4 × 4 spins
as well as the neighboring spins in a 6 × 6 integer array in shared memory, which
allows for fast computation of the spin flips. The spin update is performed in two
steps as described before. A first kernel is needed to update the “black” sites on a
checkerboard pattern, and a second processes the “white” sites. The update kernel
for the “white” sites has to wait until all “black” sites have been updated. Thus, two
separate kernels are needed. As discussed earlier, there is no other way to achieve
global synchronization between the threads. Each kernel creates an update pattern,
in which each binary digit indicates whether the associated spin has to be flipped
or not. At the end of the kernel’s execution, the 4 × 4 “meta-spins” are updated
with one global memory write. In summary, each update thread executes the steps
as follows: (a) Look up meta-spins from global memory. (b) Extract meta-spins into
6×6 integer array in shared memory which then contains the 4×4 “meta-spins” and
the neighbors. (c) For all 8 “white”/“black” sites si in the 4× 4 field, draw a random
number and evaluate the Metropolis criterion. (d) Generate the update pattern (set
the ith bit to 1, if the flip of the ith was accepted, otherwise to 0) (e) Update the
“meta-spin” by an XOR operation with the update pattern to obtain the spins at the
next time-step

Although this update scheme hardly sounds efficient, it dramatically reduces
global memory access as compared to the previous implementation, which results
in shorter computing times on GPU hardware. After the update is completed, the
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Fig. 23. (Color online) Benchmarking the implementations: The system is simulated at a
constant temperature of T = 0.99 TC . The performance of the straightforward implemen-
tation varies strongly with lattice size because of the large block size of 512 threads, while
the shared memory implementation offers stable performance over a wide range of sizes and
offers better quality random numbers – comparable to the simple CPU implementation.
For this benchmark, a GPU of NVIDIA’s new Fermi generation could be used which be-
came available in April 2010. A GeForce GTX 480 provides the following features: 1536 MB
global memory, 480 streaming processor cores, 1.40 GHz processor clock, 1848 MHz memory
clock, and a maximal power consumption of 250 W. The shared memory approach performs
roughly two times faster than on a Tesla C1060.

magnetization per spin m(T ) has to be extracted from the lattice. In a first step, the
magnetization of each block can be aggregated using the shared memory of each block
by employing a binary tree reduction and writing the total magnetization of the slice
back to main memory. The final summation of the magnetizations of the blocks can
be either carried out on the CPU or on the GPU at about equal speeds.

4.5.3 Performance comparison

The “multi-spin” implementations are compared to the “one spin per integer” im-
plementations both on a CPU and a GPU. As a measurement for the performance
of an implementation, we use the number of single spin flips per second, which also
allows for comparing results given different lattice sizes. The temperature is set to
0.99 TC . The GPUs perform most efficient for lattice sizes of a linear dimension be-
yond 4096 × 4096. For this lattice size, a GPU is faster by a factor of about 15-35,
depending on the implementation and the resulting quality of random numbers. For
the implementation used in Sec. 4.2, for ranges between 1024× 1024 and 2048× 2048
spins, the spin field size becomes comparable to the CPU L3 cache size, leading to a
higher rate of costly L3 cache misses. This is the point at which the previous imple-
mentation becomes inefficient.
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(b)(a)

Fig. 24. (Color online) (a) Each GPU processes a “meta-spin” lattice of size N = n2.
The lattices are aligned on a super-lattice, and the outer borders are connected via periodic
boundary conditions. In this example, 4 GPUs process a system of 22 ·N spins. (b) A meta-
spin update needs the 4 nearest neighbor meta-spins. On the borders of a lattice, each GPU
needs the spin information of the neighboring lattices. The border information has to be
passed between the GPUs. In our implementation this is done by using 8 neighbor arrays.

4.6 Multi-GPU acceleration

4.6.1 Implementation details

The general idea is to extend the quadratic lattice by putting multiple quadratic
“meta-spin” lattices next to each other in a super-lattice (see Fig. 24(a) for a 2×2
super-lattice) and letting each lattice be handled by one of the installed GPUs. On the
border of each lattice, at least one of the neighboring sites is located in the memory
of another GPU (see Fig. 24(b)). For this reason, the spins at the borders of each
lattice have to be transferred from one GPU to the GPU handling the adjacent lattice.
This can be realized by introducing four neighbor arrays containing the spins of the
lattices’ own borders, and four arrays for storing the spins of its adjacent neighbors
(see Fig. 24(c)). At the beginning of execution, each MPI process initializes its own
spin lattice, writes out its border spins into its own border arrays and sends them
to its neighbors. In return it receives the adjacent borders from the according MPI
processes. After this initialization phase, spins and random seeds are transferred to
the GPU. Then, a single lattice update is performed as follows: (a) Copy neighboring
borders to GPU memory. (b) Call kernel to perform update A. (c) Call kernel to
extract borders from the spin array to own borders array. (d) Copy own borders to
host memory. (d) Exchange borders with the other MPI processes. (d) Copy neighbor
borders to GPU memory again. (e) Call kernel to perform update B. (f) Call kernel to
extract borders from spin array again. (g) Transfer own borders to host memory. (h)
Exchange borders with other MPI processes. (i) Retrieve processed data from GPU.
It turns out that the transfer time was not the limiting factor for our purposes

but rather the latency of the memory accessed.

4.6.2 Performance on GPU clusters

For performance measurements on the GPU cluster, the shared memory implementa-
tion (see Sec. 4.5.2) was used, since it provided stable performance for various lattice
sizes and because the memory layout is symmetric in the x and y directions, resulting
in symmetric communication data. The tests were run on a GPU cluster with two
Tesla C1060 GPUs in each node. Communication is established via Double Data Rate
InfiniBand. The performance for various system sizes (see Fig. 25) provides evidence
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Fig. 25. (Color online) Cluster performance for various system sizes (per GPU). For more
than one GPU, spin flip performance scales nearly linearly with the amount of GPUs. Again,
optimal performance is reached at a lattice size of about 4096 × 4096 per GPU. Using 64
GPUs, a performance of 206 spin-flips per nanosecond can be achieved on a 800.000×800.000
lattice.

that for more than one GPU, spin flip performance scales nearly linearly with the
number of GPUs. The drop from one GPU to four GPUs is due to the communi-
cation overhead resulting from the exchange of borders. For larger system sizes, the
communication overhead per CPU/GPU remains constant. An optimal performance
is reached for lattice sizes beyond 4096 × 4096 per GPU. For 64 GPUs – the NEC
Nehalem Cluster maintained by the High Performance Computing Center Stuttgart
(HLRS) provides 128 GPUs – a performance of 206 spin-flips per nanosecond can be
achieved on a 800.0002 2D Ising lattice. That is, the entire lattice can be updated in
about three seconds.

5 Summary

It was shown that a graphics card architecture – a graphics processing unit (GPU)
– can be very successfully used for methods of time series analysis. An accelerated
determination of scaling exponents can be performed on a GPU as well as the calcu-
lation of autocorrelation coefficients. Results of the scaling behavior of a stochastic
process are obtained up to 80 times faster than on a modern central processing unit
(CPU) core. In addition, the relative absolute error of the results in comparison to
a CPU is smaller than 10−3. These methods were applied to a German Bund future
(FGBL) time series of the European Exchange (EUREX), which exhibits an anti-
persistence on short time scales. Evidence is found that a super-diffusive regime is
reached on medium time scales. In addition, a time series of the German DAX future
(FDAX) is analyzed.
As data-driven methods were able to be significantly accelerated on a GPU device,

we used the concept of GPU computing for a standard model in statistical physics
in order to demonstrate the wide range of applicability. Thus, we presented a GPU
accelerated version of the two dimensional ferromagnetic square lattice Ising model
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and the three dimensional ferromagnetic cubic lattice Ising model. This model is often
adapted and interpreted in interdisciplinary contexts. For example, in the context of
financial markets, spins correspond to market participants. The two possible states
model the decision to buy or to sell. For our GPU based Monte Carlo simulations
of the Ising model, we use a set of linear congruential random number generators on
the GPU device. With the GPU implementation of a checkerboard algorithm of the
two dimensional Ising model, results on the GPU can be obtained up to 60 times
faster than on a recent CPU core. An implementation of a three dimensional Ising
model on a GPU is able to generate results up to 35 times faster than on a modern
CPU core. As proof of our conceptual method for the GPU implementation, the
critical temperatures of the 2D and 3D Ising models were determined successfully by
finite size scaling. Both the theoretical result for the 2D Ising model and previous
simulation results for the 3D Ising model can be reproduced. The limitation of such
an approach as well must also be mentioned. On a single graphics card, the simulation
is limited to the amount of global memory. Algorithms simulating larger lattices have
to communicate with the main memory which is the main bottleneck. Facing this
problem, two major improvements could be realized as well. For the simple approach,
one integer number was used for one single Ising spin. By using multi-spin coding
techniques – one bit is used for one Ising spin – we improved the computation to
memory access ratio of our calculations dramatically. On one GPU, up to 7.9 spin-
flips per nanosecond are attainable this way. This update time is roughly 15 to 35
times faster than a multi-spin coded CPU version. The exact speed increase depends
on the implementation and the quality of random numbers. A second major step was
to overcome the memory limitation of the GPU global memory. It was possible to
distribute a huge Ising lattice on many GPUs – each GPU updating a sub-lattice.
This is very efficient for the Ising model as the spin configurations of sub-lattices can
be stored on the GPUs. Only the boundaries of each sub-lattice have to be shared
with neighboring GPUs hosting the neighboring lattices. This extension of the GPU
based simulation of the Ising model is very attractive for GPU clusters. It is shown
that the implementation scales nearly linearly with the number of GPUs.
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