
T h e o p e n – a c c e s s j o u r n a l f o r p h y s i c s

New Journal of Physics

Accelerated fluctuation analysis by graphic cards
and complex pattern formation in financial markets*

Tobias Preis1,2,3, Peter Virnau1, Wolfgang Paul1

and Johannes J Schneider1

1 Institute of Physics, Johannes Gutenberg University Mainz,
Staudinger Weg 7, 55128 Mainz, Germany
2 Artemis Capital Asset Management GmbH, Gartenstrasse 14,
65558 Holzheim, Germany
E-mail: preis@uni-mainz.de

New Journal of Physics 11 (2009) 093024 (21pp)
Received 2 June 2009
Published 16 September 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/9/093024

Abstract. The compute unified device architecture is an almost conventional
programming approach for managing computations on a graphics processing
unit (GPU) as a data-parallel computing device. With a maximum number of
240 cores in combination with a high memory bandwidth, a recent GPU offers
resources for computational physics. We apply this technology to methods of
fluctuation analysis, which includes determination of the scaling behavior of a
stochastic process and the equilibrium autocorrelation function. Additionally, the
recently introduced pattern formation conformity (Preis T et al 2008 Europhys.
Lett. 82 68005), which quantifies pattern-based complex short-time correlations
of a time series, is calculated on a GPU and analyzed in detail. Results are
obtained up to 84 times faster than on a current central processing unit core.
When we apply this method to high-frequency time series of the German
BUND future, we find significant pattern-based correlations on short time
scales. Furthermore, an anti-persistent behavior can be found on short time
scales. Additionally, we compare the recent GPU generation, which provides
a theoretical peak performance of up to roughly 1012 floating point operations
per second with the previous one.

∗ Supplementary information can be found on http://www.tobiaspreis.de
3 Author to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 093024
1367-2630/09/093024+21$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:preis@uni-mainz.de
http://www.njp.org/
http://www.tobiaspreis.de

2

Contents

1. Introduction 2
2. GPU device architecture 4
3. Hurst exponent 6
4. Equilibrium autocorrelation 10
5. Fluctuation pattern conformity 13
6. Conclusion and outlook 18
Acknowledgments 18
Appendix. GPU source code 19
References 19

1. Introduction

In computer science applications and diverse interdisciplinary science fields such as
computational physics or quantitative finance, the computational power requirements increase
monotonically in time. In particular, the history of time series analysis mirrors the needs of
computational power and simultaneously the opportunities arising from the use of it. Up to
the present day, it is an often made simplistic assumption that price dynamics in financial time
series obey random walk statistics in order to simplify analytic calculations in econophysics
and in financial applications. However, such approximations, which are, e.g. used in the famous
options pricing model introduced by Black and Scholes [1] in 1973, neglect the real nature
of financial market observables, and a large number of empirical deviations between financial
market time series and models presuming only a random walk behavior have been observed
in recent decades [2]–[6]. Already Mandelbrot [7, 8] discovered in the 1960s that commodity
market time series obey fat-tailed price change distributions [9]. His analysis was based on
historical cotton times and sales records dating back to the beginning of the 20th century. In
accordance with the technological improvements in computing resources, trading processes
were adapted in order to create full-electronic market places. Thus, the available amount of
historical price data increased impressively. As a consequence, the empirical properties found
by Mandelbrot were confirmed. However, the amount of transaction records available today
in time units of milliseconds also requires increased computing resources for its analysis.
From such analyses, scaling behavior, short-time anti-correlated price changes and volatility
clustering [10, 11] of financial markets are well established and can be reproduced, e.g. by a
model of the continuous double auction [12, 13] or by various agent-based models of financial
markets [14]–[22]. Furthermore, the price formation process and cross correlations [23, 24]
between equities and equity indices have been studied with the clear intention to optimize
asset allocation and portfolios. However, in contrast to such calculations, which can be done
with conventional computing facilities, a large computational power demand is driven by the
quantitative hedge fund industry and also by modern market making, which requires mostly
real time analytics. A market maker usually provides quotes for buying or selling a given asset.
In the competitive environment of electronic financial markets this cannot be done by a human
market maker alone, especially if a large number of assets is quoted concurrently. The rise

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

3

of the hedge fund industry in recent years and their interest in taking advantage of short time
correlations boosted the real-time analysis of market fluctuations and the market micro-structure
analysis in general, which is the study of the process of exchanging assets under explicit trading
rules [25], and which is studied intensely by the financial community [26]–[29].

Such computing requirements, which can be found in various interdisciplinary computer
sciences like computational physics including, e.g. Monte Carlo and molecular dynamics
simulations [30]–[32] or stochastic optimization [33], make use of the high-performance
computing resources necessary. This includes recent multi-core computing solutions based on
a shared memory architecture, which are accessible by OpenMP [34] or MPI [35] and can
be found in recent personal computers as a standard configuration. Furthermore, distributed
computing clusters with homogeneous or heterogeneous node structures are available in order
to parallelize a given algorithm by separating it into various sub-algorithms.

However, a recent trend in computer science and related fields is general purpose
computing on graphics processing units (GPUs), which can yield impressive performance,
i.e. the required processing times can be reduced to a great extent. Some applications have
already been realized in computational physics [31], [36]–[43]. Recently, the Monte Carlo
simulation of the two-dimensional and three-dimensional ferromagnetic Ising model could be
accelerated up to 60 times [44] using a graphic card architecture. With multiple cores connected
by high memory bandwidth, today’s GPUs offer resources for non-graphics processing. In the
beginning, GPU programs used C-like programming environments for kernel execution such
as OpenGL shading language [45] or C for graphics (Cg) [46]. The compute unified device
architecture (CUDA) [47] is an almost conventional programming approach making use of the
unified shader design of recent GPUs from NVIDIA corporation. The programming interface
allows one to implement an algorithm using standard C language without any knowledge of
the native programming environments. A comparable concept ‘Close To the Metal’ (CTM) [48]
was introduced by Advanced Micro Devices Inc. for ATI graphics cards. One has to state that
computational power of consumer graphics cards roughly exceeds that of a central processing
unit (CPU) by 1–2 orders of magnitudes. A conventional CPU nowadays provides a peak
performance of roughly 20 × 109 floating point operations per second (FLOPS) [31]. The
consumer graphics card NVIDIA GeForce GTX 280 reaches a theoretical peak performance of
933 × 109 FLOPS. If one tried to realize the computational power of one GPU with a cluster of
several CPUs, a much larger amount of electric power would be required. A GTX 280 graphics
card exhibits a maximum power consumption of 236 W [49], while a recent Intel CPU consumes
roughly 100 W.

We apply this general-purpose graphics processing unit (GPGPU) technology to
methods of time series analysis, which includes determination of the Hurst exponent and
equilibrium autocorrelation function. Additionally, the recently introduced pattern conformity
observable [50], which is able to quantify pattern-based complex short-time correlations of a
time series, is calculated on a GPU. Furthermore, we compare the recent GPU generation with
the previous one. All methods are applied to a high-frequency data set of the Euro-Bund futures
contract traded at the electronic derivatives exchange Eurex.

The paper is organized as follows. In section 2, a brief overview of key facts and properties
of the GPU architecture is provided in order to clarify implementation constraint details for the
following sections. A GPU-accelerated Hurst exponent estimation can be found in section 3. In
section 4, the equilibrium autocorrelation function is implemented on a GPU and in section 5,
the pattern conformity is analyzed on a GPU in detail. In each of these sections, the performance

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

4

Figure 1. Schematic visualization of the grid of thread blocks for a two-
dimensional thread and block structure.

of the GPU code as a function of parameters is first evaluated for a synthetic time series and
compared to the performance on a CPU. Then the time series methods are applied to a financial
market time series and a discussion of numerical errors is presented. Finally, our conclusions
are summarized in section 6.

2. GPU device architecture

In order to provide and discuss information about implementation details on a GPU for time
series analysis methods, key facts of the GPU device architecture are briefly summarized in
this section. As mentioned in the introduction, we use the compute unified device architecture
(CUDA), which allows the implementation of algorithms using standard C language with
CUDA specific extensions. Thus, CUDA issues and manages computations on a GPU as a
data-parallel computing device.

The graphics card architecture, which is used in recent GPU generations, is built around
a scalable array of streaming MPs [47]. One such MP contains amongst others eight scalar
processor cores, a multi-threaded instruction unit, and shared memory, which is located on-chip.
When a C program using CUDA extensions and running on the CPU invokes a GPU kernel,
which is a synonym for a GPU function, many copies of this kernel—known as threads—
are enumerated and distributed to the available MPs, where their execution starts. For such
an enumeration and distribution, a kernel grid is subdivided into blocks and each block is
subdivided into various threads as illustrated in figure 1 for a two-dimensional thread and
block structure. The threads of a thread block are executed concurrently in the vacated MPs.

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

5

Figure 2. Schematic visualization of GPU MPs with on-chip shared memory.

In order to manage a large number of threads, a single-instruction multiple-thread (SIMT) unit
is used. An MP maps each thread to one scalar processor core and each scalar thread executes
independently. Threads are created, managed, scheduled and executed by this SIMT unit in
groups of 32 threads. Such a group of 32 threads forms a warp, which is executed on the same
MP. If the threads of a given warp diverge via a data-induced conditional branch, each branch
of the warp is executed serially and the processing time of this warp consists of the sum of the
branches’ processing times.

As shown in figure 2, each MP of the GPU device contains several local 32-bit registers per
processor, memory that is shared by all scalar processor cores of an MP. Furthermore, constant
and texture cache are available, which is also shared on an MP. In order to afford reducing results
of involved MPs, slower global memory can be used, which is shared among all MPs and is also
accessible by the C function running in the CPU. Note that the GPU’s global memory is still
roughly 10 times faster than the current main memory of personal computers. Detailed facts
of the consumer graphics cards 8800 GT and GTX 280 used by us can be found in table 1.
Furthermore note that a GPU device only supports single-precision floating-point operations,
with the exception of the most modern graphic cards starting with the GTX 200 series. However,
the IEEE-754 standard for single-precision numbers is not completely realized. Deviations can
be found especially for rounding operations. In contrast, the GTX 200 series supports also
double-precision floating-point numbers. However, each MP features only one double-precision
processing core and so, the theoretical peak performance is dramatically reduced for double-
precision operations. Further information about the GPU device properties and CUDA can be
found in [47].

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

6

Table 1. Key facts and properties of the applied consumer graphics cards. The
theoretical acceleration factor between GeForce 8800 GT and GeForce GTX 280
is given by the difference in number of cores × clock rate.

GeForce GeForce
8800 GT GTX 280

Global memory 512 MB 1024 MB
Number of multiprocessors (MPs) 14 30
Number of cores 112 240
Constant memory 64 kB 64 kB
Shared memory per block 16 kB 16 kB
Registers available per block 8192 16384
Warp size 32 32
Clock rate 1.51 GHz 1.30 GHz

3. Hurst exponent

The Hurst exponent H [51] provides information on the relative tendency of a stochastic
process. A Hurst exponent H <0.5 indicates an anti-persistent behavior of the analyzed process,
which means that the process is dominated by a mean reversion tendency. H >0.5 mirrors a
super-diffusive behavior of the underlying process. Extreme values tend to be followed by
extremal values. If the deviations from the mean values of the time series are independent,
which corresponds to a random walk behavior, a Hurst exponent of H = 0.5 is obtained.

The Hurst exponent H was originally introduced by Harold Edwin Hurst [52], a British
government administrator. He studied records of the Nile river’s volatile rain and drought
conditions and noticed interesting coherences for flood periods. Hurst observed in the eight
centuries of records that there was a tendency for a year with good flood conditions to be
followed by another year with good flood conditions. Nowadays, the Hurst exponent as a scaling
exponent is well studied in context of financial markets [50], [53]–[56]. Typically, an anti-
persistent behavior can be found on short timescales due to the nonzero gap between offer
and demand. On medium timescales, a super-diffusive behavior can be detected [54]. On long
timescales, a diffusive regime is reached, due to the law of large numbers.

For a time series p(t) with t ∈ {1, 2, . . . , T }, the time lag-dependent Hurst exponent
Hq(1t) can be determined by the general relationship

〈|p(t + 1t) − p(t)|q〉1/q
∝ 1t Hq (1t) (1)

with the time lag 1t � T and 1t ∈ N. The brackets 〈. . .〉 denote the expectation value. Apart
from (1), there are also other calculation methods, e.g. the rescaled range analysis [51]. We
present in the following the Hurst exponent determination implementation on a GPU for q = 1
and use H(1t) ≡ Hq=1(1t). The process to be analyzed is a synthetic anti-correlated random
walk, which was introduced in [50]. This process emerges from the superposition of two
random walk processes with different timescale characteristics. Thus, a parameter-dependent
anti-correlation at time lag one can be realized. As a first step, one has to allocate memory
on the GPU device’s global memory for the time series, intermediate results and final results.
In a first approach, the time lag-dependent Hurst exponent is calculated up to 1tmax = 256.

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

7

Figure 3. Schematic visualization of the determination of the Hurst exponent on
a GPU architecture for T = 32 + 4 and 1tmax = 4. The calculation is split into
various processing steps to ensure that their predecessors are completed.

In order to simplify the reduction process of the partial results, the overall number of time
steps T has to satisfy the condition T = (2α + 1) × 1tmax, with α being an integer number
called the length parameter of the time series. The number of threads per block—known
as block size—is equivalent to 1tmax. The array for intermediate results possesses length
T too, whereas the array for the final results contains 1tmax entries. After allocation, the
time series data have to be transferred from the main memory to the GPU’s global memory.
If this step is completed, the main calculation part can start. As illustrated in figure 3 for
block 0, each block, which contains 1tmax threads each, loads 1tmax data points of the time
series from global memory to shared memory. In order to realize such a high-performance
loading process, each thread4 loads one value and stores this value in the array located in
the shared memory, which can be accessed by all threads of a block. Analogously, each
block also loads the next 1tmax entries. In the main processing step, each thread is in charge
of one specific time lag. Thus, each thread is responsible for a specific value of 1t and
summarizes the terms |p(t + 1t) − p(t)| in the block sub-segment of the time series. As the
maximum time lag is equivalent to the maximum number of threads and as the maximum
time lag is also equivalent to half the data points loaded per block, all threads have to
summarize the same number of addends and so, a uniform workload of the graphics card
is realized. However, as it is only possible to synchronize threads within a block and a
native block synchronization does not exist, partial results of each block have to be stored in
block-dependent areas of the array for intermediate results, as shown in figure 3. The termination
of the GPU kernel function ensures that all blocks were executed. In a post processing step, the
partial arrays have to be reduced. This is realized by a binary tree structure, as indicated in
figure 3. After this reduction, the resulting values can be found in the first 1tmax entries of the
intermediate array and a final processing kernel is responsible for normalization and gradient
calculation. The source code of these GPU kernel functions can be found in the appendix.

For the comparison between CPU and GPU implementations, we use an Intel Core 2 Quad
CPU (Q6700) with 2.66 GHz and 4096 kB cache size, of which only one core is used. The

4 Thread and block IDs are accessible in standard C language via built-in variables.

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

8

Length parameter (α)

T
im

e
(m

s)

10−2

10−1

100

101

102

103

104

105

106

107

4 6 8 10 12 14

Time on GPU for allocation
Time on GPU for memory transfer
Time on GPU for main function
Time on GPU for post processing
Time on GPU for final processing
Total processing time on GPU
Total processing time on CPU

α

A
cc

el
er

at
io

n
β

10

20

30

40

4 6 8 10 12 14

Figure 4. Processing times for the calculation of the Hurst exponent H(1t)
on GPU and CPU for 1tmax = 256. The consumer graphics card 8800 GT is
used as GPU device. The total processing time on the GPU can be broken into
allocation time, time for memory transfer, time for main processing, time for
post-processing, and time for final processing. The acceleration factor β is shown
in the inset. A maximum acceleration factor of roughly 40 can be obtained.
Furthermore, at α = 9 there is a break of the slope of the acceleration, which
is influenced by cache size effects.

standard C source code executed on the host is compiled with the gcc compiler (version 4.2.1).
The results for 1tmax = 256 and the consumer graphics card 8800 GT can be found in figure 4.
The acceleration factor β, which is shown in the inset, reaches a maximum value of roughly 40,
and is determined by the relationship

β =
Total processing time on CPU

Total processing time on GPU
. (2)

A smaller speed-up factor can be measured for small values of α, as the relative fraction of
allocation time and time for memory transfer is larger in comparison to the time needed for
the calculation steps. The corresponding analysis for the GTX 280 yields a larger acceleration
factor β of roughly 70. If we increase the maximum time lag 1tmax to 512, which is only
possible for the GTX 280, a maximum speed-up factor of roughly 80 can be achieved,
as shown in figure 5. This indicates that 1tmax = 512 leads to a higher workload on the
GTX 280.

At this point, we can also compare the ratio between the performances of 8800 GT and
GTX 280 for our application to the ratio of theoretical peak performances. The latter is given
as the number of cores multiplied with the clock rate, which amounts to roughly 1.84. If we
compare the total processing times on these GPUs for α = 15 and 1tmax = 256, we obtain an
empirical performance ratio of 1.7. If we use the acceleration factors for 1tmax = 256 on the
8800 GT and for 1tmax = 512 on the GTX 280 for comparison, we obtain a value of 2.

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

9

Length parameter (α)

T
im

e
(m

s)

10−2

10−1

100

101

102

103

104

105

106

107

2 4 6 8 10 12 14

Time on GPU for allocation
Time on GPU for memory transfer
Time on GPU for main function
Time on GPU for post processing
Time on GPU for final processing
Total processing time on GPU
Total processing time on CPU

α

A
cc

el
er

at
io

n
β

0

20

40

60

80

2 4 6 8 10 12 14

Figure 5. Processing times for the calculation of the Hurst exponent H(1t) on
GPU and CPU for 1tmax = 512. These results are obtained by the GTX 280. The
total processing time on GPU can also be broken into allocation time, time for
memory transfer, time for main processing, time for post-processing and time for
final processing. A maximum acceleration factor of roughly 80 can be reached,
which is shown in the inset.

After this performance analysis, we apply the GPU implementation to real financial market
data in order to determine the Hurst exponent of the Euro-Bund futures contract traded at
the European exchange (Eurex). In this context, we will also gauge the accuracy of the GPU
calculations by quantifying deviations from the calculation on a CPU. The Euro-Bund futures
contract (FGBL) is a financial derivative. A futures contract is a standardized contract to buy
or sell a specific underlying instrument at a proposed date in the future, which is called the
expiration time of the futures contract, at a specified price. The underlying instruments of the
FGBL contract are long-term debt instruments issued by the Federal Republic of Germany
with remaining terms of 8.5 to 10.5 years and a coupon of 6%. We use the Euro-Bund futures
contract with expiration time June 2007. The time series shown in figure 6 contains 1 051 982
trades, recorded from 8 March 2007 to 7 June 2007. In all presented calculations of the FGBL
time series on the GPU, α is fixed to 11. Thus, the data set is limited to the first T = 1 049 088
trades in order to fit the data set length to the constraints of the specific GPU implementation. In
figure 7, the time lag-dependent Hurst exponent H(1t) is presented. On short timescales, the
well-known anti-persistent behavior can be detected. On medium timescales, small evidence
is given, that the price process reaches a super-diffusive regime. For long timescales the price
dynamics tend to random walk behavior (H = 0.5), which is also shown for comparison. The
relative error

ε =

∣∣∣∣ HGPU(1t) − HCPU(1t)

HCPU(1t)

∣∣∣∣ (3)

shown in the inset of figure 7 is smaller than one-tenth of a per cent.

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

10

t (105 units of time tick)

p
(t)

 (
pe

rc
en

t o
f p

ar
 v

al
ue

)

111.5

112.0

112.5

113.0

113.5

114.0

114.5

115.0

115.5

116.0

116.5

1 2 3 4 5 6 7 8 9 10

FGBL JUN 2007

Figure 6. High-frequency financial time series of the FGBL with expiration time
June 2007 traded at the Eurex: The time series contains 1 051 982 trades recorded
from 8 March 2007 to 7 June 2007. In all presented calculations of the FGBL
time series on a GPU, α is fixed to 11. Thus, the data set is limited to the first
T = 1 049 088 trades in order to fit the data set length to the constraints of the
specific GPU implementation.

4. Equilibrium autocorrelation

The autocorrelation function is a widely used concept in order to determine dependencies within
a time series. The autocorrelation function is given by the correlation between the time series
and the time series shifted by the time lag 1t through

ρ(1t) =
〈p(t) · p(t + 1t)〉 − 〈p(t)〉〈p(t + 1t)〉√

〈p(t)2〉 − 〈p(t)〉2
√

〈p(t + 1t)2〉 − 〈p(t + 1t)〉2
. (4)

For a stationary time series, (4) reduces to

ρ(1t) =
〈p(t) · p(t + 1t)〉 − 〈p(t)〉2

〈p(t)2〉 − 〈p(t)〉2
, (5)

as the mean value and the variance stay constant, i.e. 〈p(t)〉 = 〈p(t + 1t)〉 and 〈p(t)2
〉 =

〈p(t + 1t)2
〉.

Applied to financial markets it can be observed that the autocorrelation function of price
changes exhibits a significant negative value at time lag one tick, whereas it vanishes for
time lags 1t >1. Furthermore, the autocorrelation of absolute price changes or squared price
changes, which is related to the volatility of the price process, decays slowly [15]. In order to
implement (5) on a GPU architecture, similar steps as in section 3 are necessary. The calculation
of the time lag-dependent part 〈p(t) · p(t + 1t)〉 is analogous to the determination of the Hurst
exponent on the GPU. The input time series, which is transferred to the GPU’s main memory,
does not contain prices but price changes. However, in addition one needs the results for 〈p(t)〉

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

11

Time lag ∆t (units of time tick)

H
ur

st
 e

xp
on

en
t H

(∆
t)

0.0

0.1

0.2

0.3

0.4

0.5

21 22 23 24 25 26 27 28 29

Random walk
FGBL (CPU)
FGBL (GPU)

Time lag ∆t (units of time tick)
R

el
at

iv
e

er
ro

r
ε

(%
)

0.00

0.02

0.04

0.06

100 200 300 400 500

Figure 7. Hurst exponent H(1t) in dependence of time lag 1t calculated on
CPU and GPU. Additionally, the theoretical Hurst exponent of a random walk
process (H = 0.5) is included for comparison. One can clearly see the well-
known anti-persistent behavior of the FGBL time series on short timescales
(1t < 24 time ticks). Furthermore, evidence is given that the process reaches a
slightly super-diffusive region (H ≈ 0.525) on medium timescales (24 time ticks
< 1t < 27 time ticks). On long timescales, an asymptotic random walk behavior
can be found. In order to quantify deviations from calculations on a CPU, the
relative error ε (see main text) is presented for each time lag 1t in the inset. It is
typically smaller than 10−3.

and 〈p(t)2
〉. For this purpose, an additional array of length T is allocated, in which a GPU

kernel function stores the squared values of the time series. Then, time series and squared time
series are reduced with the same binary tree reduction process as in section 3. However, as this
procedure produces arrays of length 1tmax, one has to summarize these values in order to obtain
〈p(t)〉 and 〈p(t)2

〉.
The processing times for determining the autocorrelation function for 1tmax = 256 on CPU

and 8800 GT can be found in figure 8. Here, we find that allocation and memory transfer
dominate the total processing time on the GPU for small values of α and thus, only a fraction
of the maximum acceleration factor β ≈ 33, which is shown as an inset, can be reached. Using
the consumer graphics card GTX 280, we obtain a maximum speed-up factor of roughly 55
for 1tmax = 256 and 68 for 1tmax = 512 as shown in figure 9. In figure 10, the autocorrelation
function of the FGBL time series is shown. At time lag one, the time series exhibits a large
negative autocorrelation, ρ(1t = 1) = −0.43. In order to quantify deviations between GPU
and CPU calculations, the relative error ε is presented in the inset of figure 10. Note that small
absolute errors can cause relative errors up to three per cent because the values ρ(1t >1) are
close to zero.

For some applications, it is interesting to study larger maximum time lags of the
autocorrelation function. Based on our GPU implementation one has to modify the program
code in the following way. So far, each thread was responsible for a specific time lag 1t .

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

12

Length parameter (α)

T
im

e
(m

s)

10−2

10−1

100

101

102

103

104

105

106

107

4 6 8 10 12 14

Time on GPU for allocation
Time on GPU for memory transfer
Time on GPU for main function
Time on GPU for post processing
Time on GPU for final processing
Total processing time on GPU
Total processing time on CPU

α

A
cc

el
er

at
io

n
β

0

10

20

30

4 6 8 10 12 14

Figure 8. Processing times for the calculation of the equilibrium autocorrelation
function ρ(1t) on the GPU and CPU for 1tmax = 256. The graphics card
8800 GT is used as the GPU device. The total processing time on the GPU is
broken into allocation time, time for memory transfer, time for main processing,
time for post-processing and time for final processing. The acceleration factor β

is shown as inset. A maximum acceleration factor of roughly 33 can be obtained.

Length parameter (α)

T
im

e
(m

s)

10−2

10−1

100

101

102

103

104

105

106

107

2 4 6 8 10 12 14

Time on GPU for allocation
Time on GPU for memory transfer
Time on GPU for main function
Time on GPU for post processing
Time on GPU for final processing
Total processing time on GPU
Total processing time on CPU

α

A
cc

el
er

at
io

n
β

0

20

40

60

2 4 6 8 10 12 14

Figure 9. Processing times for the calculation of the equilibrium autocorrelation
function ρ(1t) on the GPU and CPU for 1tmax = 512. The GTX 280 is used as
the GPU device. A maximum acceleration factor of roughly 68 can be obtained.

In a modified ansatz, each thread is responsible for more than one time lag in order to realize
a maximum time lag, which is a multiple of the maximal 512 threads per block. This way, one
obtains a maximum speed-up factor of, e.g. roughly 84 for 1tmax = 1024 using the GTX 280.

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

13

Time lag ∆t (units of time tick)

A
ut

oc
or

re
la

tio
n

ρ (
∆t

)

−0.4

−0.3

−0.2

−0.1

0.0

20 21 22 23 24 25 26 27 28 29

FGBL (CPU)
FGBL (GPU)

Time lag ∆t (units of time tick)
R

el
at

iv
e

er
ro

r
ε

(%
)

0.0

0.5

1.0

1.5

2.0

2.5

100 200 300 400 500

Figure 10. Equilibrium autocorrelation function ρ(1t) in dependence of time
lag 1t calculated on the CPU and GPU. One can clearly see the well-known neg-
ative autocorrelation of the FGBL time series at time lag one. In order to quantify
deviations from calculations on a CPU the relative error ε is presented for each
time lag 1t in the inset. The relative error is always smaller than 3 × 10−2.

5. Fluctuation pattern conformity

As a third method of time series analysis, the recently introduced fluctuation pattern conformity
(PC) determination [50] was migrated to a GPU architecture. The PC quantifies pattern-based
complex short-time correlations of a time series. In context of financial market time series, the
existence of complex correlations implies that reactions of market participants to a given time
series pattern are related to comparable patterns in the past. On medium and long timescales,
one can state that no significant complex correlations can be measured because the price
process exhibits random walk statistics. However, if one investigates the trading process on a
tick-by-tick basis, evidence is given for recurring events. In the course of these considerations, a
general pattern conformity observable is defined in [50], which is not limited to the application
to financial market time series. In general, the aim is to compare a current pattern of time interval
length 1t− with all possible previous patterns of the time series p(t). The current observation
time shall be denoted by t̂ . Then, the current pattern’s time interval measured in time ticks
is given by [t̂ − 1t−

; t̂). The evolution after this current pattern interval—the distance to t̂ is
expressed by 1t+ (see below)—is compared with the prediction derived from all historical
patterns. However, as the standard deviation of the price process is not constant in time, all
comparison patterns have to be normalized with respect to the current pattern. For this purpose,
the true range is used—the difference between high and low within each interval. Let ph(t̂, 1t−)

be the maximum value of a pattern of length 1t− at time t̂ and analogously pl(t̂, 1t−) be the
minimum value. Thus, we can create a modified time series, which is true range adapted in the
appropriate time interval, through

p̃1t−

t̂ (t) =
p(t) − pl(t̂, 1t−)

ph(t̂, 1t−) − pl(t̂, 1t−)
(6)

with p̃1t−

t̂
(t) ∈ [0; 1] ∀ t ∈ [t̂ − 1t−

; t̂), as illustrated in figure 11.

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

14

0.0

0.5

1.0

t̂ − ∆t − t̂ − 1 t̂

p~t̂
∆t−(t)

p~t̂ −τ
∆t− (t − τ)

p~t̂
∆t−(t̂ − 1)

Figure 11. Schematic visualization of the pattern conformity estimation
mechanism. The current pattern p̃1t−

t̂
(t) and the comparison pattern p̃1t−

t̂−τ
(t − τ)

have the maximum value 1 and the minimum value 0 in [t̂ − 1t−
; t̂), as shown by

the filled rectangle. For the pattern conformity calculation, we need to analyze for
each time difference 1t+ whether the current pattern value and the comparison
pattern value at t̂ + 1t+ is above or below the last value of the current pattern
p̃1t−

t̂
(t̂ − 1). If both are above or below this last value, then +1 is added to the

non-normalized pattern conformity ξχ(1t+, 1t−). If one is above and the other
below, then −1 is added.

In order to assess the match of a pattern with a comparison pattern, the fit quality Q1t−

t̂
(τ)

between the current pattern sequence p̃1t−

t̂
(t) and a comparison pattern sequence p̃1t−

t̂−τ
(t − τ)

for t ∈ [t̂ − 1t−
; t̂) has to be determined by the summation of the squared variations through

Q1t−

t̂ (τ) =

1t−∑
θ=1

(
p̃1t−

t̂
(t̂ − θ) − p̃1t−

t̂−τ
(t̂ − τ − θ)

)2

1t−
. (7)

Note that Q1t−

t̂
(τ) takes values in the interval [0, 1] as a result of the true range adaption. With

these elements, one can define a pre-stage of the PC, which is not yet normalized, as motivated
in figure 11, by

ξχ

(
1t+, 1t−

)
=

T −1t+∑
t̂=1t−

t̂∑
τ=τ ∗

sgn
(
ω1t−

t̂
(τ, 1t+)

)
exp

(
χ Q1t−

t̂
(τ)

) (8)

with τ ∗
= t̂ − τ̂ if t̂ − τ̂ − 1t− > 0 and τ ∗

= 1t− else. In general, we limit the evaluation for
each pattern to maximal τ̂ historical patterns. Furthermore, for the sign function, we use the stan-
dard definition sgn (x) = 1 for x > 0, sgn (x) = 0 for x = 0, and sgn (x) = −1 for x < 0. In (8),
the parameter χ weighs pattern terms according to their qualities Q1t−

t̂
(τ) . The larger χ , the

stricter the pattern weighting in order to use only pattern sequences with good agreement to the
current pattern sequence. The expression ω1t−

t̂
(τ, 1t+) in (8), which takes into account the value

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

15

Scan interval parameter (γ)

T
im

e
(m

s)

10−2

10−1

100

101

102

103

104

105
106

107
108

109

1010

1011

1012

20 21 22 23 24 25

Time on GPU for allocation
Time on GPU for memory transfer
Time on GPU for main function
Total processing time on GPU
Total processing time on CPU

γ
A

cc
el

er
at

io
n

β

5

10

15

20 21 22 23 24 25

Figure 12. Processing times for the calculation of the pattern conformity on GPU
and CPU for 1t−

max = 1t+
max = 20. The GTX 280 is used as GPU device. The

total processing time on GPU is broken into allocation time, time for memory
transfer, and time for main processing. The acceleration factor β is shown as
inset. A maximum acceleration factor of roughly 19 can be obtained.

of current and comparison pattern sequences after t̂ for a proposed 1t+ relative to p̃1t−

t̂
(t̂ − 1),

is given by

ω1t−

t̂ (τ, 1t+)=

(
p̃1t−

t̂ (t̂ −1 +1t+)− p̃1t−

t̂ (t̂ −1)
) (

p̃1t−

t̂−τ
(t̂ − τ −1+1t+) − p̃1t−

t̂ (t̂ − 1)
)

. (9)

By normalizing (8) through its altered version, in which the sign function is replaced by its
absolute value, the pattern conformity can be written as

4χ

(
1t+, 1t−

)
=

ξχ

(
1t+, 1t−

)
T −1t+∑
t̂=1t−

t̂∑
τ=τ ∗

|sgn
(
ω1t−

t̂
(τ, 1t+)

)
|

exp
(
χ Q1t−

t̂
(τ)

) . (10)

We repeat that the pattern conformity is the most accurate measure to characterize the
short-term correlations of a general time series. It is essentially given by the comparison of
subsequences of the time series. Subsequences of various lengths are compared with historical
sequences in order to extract similar reactions on similar patterns.

In order to realize a GPU implementation of the pattern conformity provided in (10),
one has to allocate memory as for the Hurst exponent and for the autocorrelation function
determination in sections 3 and 4, respectively. The allocation is needed for the array containing
the time series, which has to be transferred to the global memory of the GPU, and for further
processing arrays. The main processing GPU function is invoked with a proposed 1t− and
a given t̂ . In the kernel function, shared memory arrays for comparison and current pattern
sequences are allocated and loaded from global memory of the GPU. In the main calculation,
each thread handles one specific comparison pattern, i.e. each thread is responsible for one

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

16

0
5

10
15

20
25 0

5
10

15
20

25

0.0

0.2

0.4

0.6

0.8

∆t

(a)

− ∆t+

Ξ

0
5

10
15

20
25 0

5
10

15
20

25

0.00

0.05

0.10

0.15

0.20

∆t

(b)

− ∆t+

εΞ

Figure 13. (a) Pattern conformity 4GPU
χ=100(1t−, 1t+) of FGBL time series

with τ̂ = 16 384 calculated on the consumer graphics card GTX 280.
(b) Relative error ε4 (in percent) between calculation on the GPU and CPU
(4CPU

χ=100(1t−, 1t+), with the same parameter settings). The processing time on
the GPU was 5.8 h; the results on the CPU were obtained after 137.2 h, which
corresponds to roughly 5.7 days. Thus, for these parameters an acceleration
factor of roughly 24 is obtained.

value of τ and so, τ̂ = γ × σ is applied with γ denoting the scan interval parameter and
σ denoting the number of threads per block. Thus, γ corresponds to the number of blocks.
The partial results of ξχ(1t+, 1t−) are stored in a global memory based array of dimension
τ̂ × 1t+. These partial results have to be reduced in a further processing step, which uses the
same binary tree structure as applied in section 3 for the Hurst exponent determination.

The pattern conformity for a random walk time series, which exhibits no correlations by
construction, is 0. The pattern conformity for a perfectly correlated time series is 1 [50]. A
maximum speed-up factor of roughly 10 can be obtained for the calculation of the pattern
conformity on the GPU and CPU for 1t−

max = 1t+
max = 20, T = 25 000, χ = 100 and σ = 256

using the 8800 GT. In figure 12, corresponding results for using the GTX 280 are shown in
dependence of the scan interval parameter γ . Here, a maximum acceleration factor of roughly
19 can be realized.

With this method, which is able to detect complex correlations of a time series, it is also
possible to search for pattern conformity based complex correlations in financial market data,
as shown in figure 13 for the FGBL time series. In figure 13(a), the results for the pattern
conformity 4GPU

χ=100(1t−, 1t+) are presented with τ̂ = 16 384 calculated on the GTX 280. One
can clearly see that for small values of 1t− and 1t+ large values of 4GPU

χ=100 are obtained
with a maximum value of roughly 0.8. For the results shown in figure 13(b), the calculation
of the pattern conformity is executed on the CPU, and in figure 13(c), the relative absolute
error

ε4 = 102
×

∣∣∣∣∣4GPU
χ=100 − 4CPU

χ=100

4CPU
χ=100

∣∣∣∣∣ (11)

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

17

0
5

10
15

20
25

0
5

10
15

20
25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆t − ∆t +

Ξ*

Figure 14. (a) FGBL pattern conformity corrected by the ACRW with φ = 0.044
and with 1.5 × 106 time steps. Thus, 4∗

= 4FGBL
χ=100 − 4ACRW

χ=100 is shown (see the
text).

is shown, which is smaller than two-tenths of a per cent. This small error arises because the GPU
device summarizes only a large number of the weighted values +1 and −1. Thus, the limitation
to single precision has no significant negative effect for the result.

This raw pattern conformity profile is dominated by trivial pattern correlation parts caused
by the jumps of the price process between best bid and best ask price—the best bid price is
given by the highest limit order price of all buy orders in an order book and analogously the
best ask price is given by the lowest limit order price of all sell orders in an order book. As
performed in [50], there are possibilities for reducing these trivial pattern conformity parts. For
example, it is possible to add such jumps around the spread synthetically to a random walk.
Let p∗

φ be the time series of the synthetically anti-correlated random walk created (ACRW) in a
Monte Carlo simulation through p∗

φ = aφ(t) + b(t), which was used in sections 3–5 as synthetic
time series. With probability φ ∈ [0; 0.5] the expression aφ(t + 1) − aφ(t) = +1 will be applied
and with probability φ a decrement aφ(t + 1) − aφ(t) = −1 will occur. With probability 1–2φ

the expression aφ(t + 1) = aφ(t) is used. The stochastic variable b(t) models the bid-ask spread
and can take the value 0 or 1 in each time step, each with probability 0.5. Thus, by changing φ,
the characteristic timescale of process aφ in comparison to process b can be modified.

Parts of the pattern-based correlations in figure 13 stem from this trivial negative
autocorrelation for 1t = 1. In order to try to correct for this, in figure 14 (an animated
visualization can be found in the multimedia enhancements of this publication), the pattern
conformity of the ACRW with φ = 0.044, which reproduces the anti-correlation of the FGBL
time series at time lag 1t = 1, is subtracted from the data of figure 13(a). Obviously, the
autocorrelation for the time lag 1t = 1, which is understood from the order book structure
is not the sole reason for the pattern formation conformity, which is shown in figure 13(a).
Thus, evidence is obtained that financial market time series show pattern correlation on very
short timescales beyond the simple anti-persistence which is due to the gap between bid and ask
prices.

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

18

6. Conclusion and outlook

In this paper, we applied the compute unified device architecture—a programming approach for
issuing and managing computations on a GPU as a data-parallel computing device—to methods
of fluctuation analysis. Firstly, the Hurst exponent calculation was presented performed on a
GPU. These results of the scaling behavior of a stochastic process can be obtained up to 80
times faster than on a current CPU core and the relative absolute error of the results obtained
from the CPU and GPU is smaller than 10−3. The calculation of the equilibrium autocorrelation
function was also migrated to a GPU device successfully and applied to a financial market
time series. In this case, acceleration factors up to roughly 84 were realized. In a further part,
the pattern formation conformity algorithm, which quantifies pattern-based complex short-time
correlations of a time series, was determined on a GPU. For this application the GPU was up
to 24 times faster than the CPU, and the values provided by the GPU and CPU differ only in a
relative error of maximal two-tenths of a per cent. Furthermore, we could verify, that the current
GPU generation is roughly two times faster than the previous one. The presented methods were
applied to an FGBL time series of the Eurex, which exhibits an anti-persistent regime on short
timescales. Evidence was found that a super-diffusive regime is reached on medium timescales.
On long timescales, the FGBL time series complies to random walk statistics. Furthermore, the
anti-correlation at time lag one—an empirical stylized fact of financial market time series—was
verified. The pattern conformity which is used is the most accurate measure to characterize the
short-term correlations of a general time series. It is essentially given by the comparison of
subsequences of the time series. Subsequences of various lengths are compared with historical
sequences in order to extract similar reactions on similar patterns. The pattern conformity of
the FGBL contract exhibits large values up to 0.8. However, these values also include the trivial
auto-correlation property at time lag one, which can be removed by the pattern conformity of a
synthetic anti-correlated random walk. However, significant pattern based correlations are still
exhibited after correction. Thus, evidence is obtained that financial market time series show
pattern correlation on very short timescales beyond the simple anti-persistence, which is due
to the gap between bid and ask prices. Further applications of the GPU-accelerated techniques
in context of the Monte Carlo simulations and agent-based modeling of financial markets are
certainly well worth pursuing. As already mentioned in the introduction, the main advantage of
general-purpose computations on GPUs is that one does not need special-purpose computers.
Although GPU computing opens a large variety of possibilities, the recent development of using
graphic cards for scientific computing will perhaps also revive special-purpose computing as
GPU implementations are not appropriate for each problem.

Acknowledgments

This work was financially supported by the German Research Foundation (DFG) and benefited
by the Forschungsfond of the Materialwissenschaftliches Forschungszentrum (MWFZ) of the
Johannes Gutenberg University of Mainz. The present work is based on the private opinion of
the authors and does not necessarily reflect the views of Artemis Capital Asset Management
GmbH.

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.njp.org/

19

Appendix. GPU source code

Source code of the GPU kernel functions for determining the time lag-dependent Hurst exponent
H(1t). These functions are executed on the GPU device.

References

[1] Black F and Scholes M 1973 J. Polit. Econ. 81 637
[2] Cont R and Bouchaud J P 2000 Macroecon. Dyn. 4 170
[3] Gopikrishnan P, Plerou V, Amaral L A N, Meyer M and Stanley H E 1999 Phys. Rev. E 60 5305
[4] Mantegna R N and Stanley H E 2000 An Introduction to Econophysics—Correlations and Complexity in

Finance (Cambridge: Cambridge University Press)
[5] Bouchaud J P and Potters M 2000 Theory of Financial Risks—From Statistical Physics to Risk Management

(Cambridge: Cambridge University Press)

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://dx.doi.org/10.1086/260062
http://dx.doi.org/10.1017/S1365100500015029
http://dx.doi.org/10.1103/PhysRevE.60.5305
http://www.njp.org/

20

[6] Paul W and Baschnagel J 2000 Stochastic Processes: From Physics to Finance (Heidelberg: Springer)
[7] Mandelbrot B 1963 J. Bus. 36 394
[8] Mandelbrot B 1964 J. Bus. 37 393
[9] Kiyono K, Struzik Z R and Yamamoto Y 2006 Phys. Rev. Lett. 96 068701

[10] Bouchaud J P, Matacz A and Potters M 2001 Phys. Rev. Lett. 87 228701
[11] Krawiecki A, Holyst J A and Helbing D 2002 Phys. Rev. Lett. 89 158701
[12] Daniels M G, Farmer J D, Gillemot L, Iori G and Smith E 2003 Phys. Rev. Lett. 90 108102
[13] Smith E, Farmer J D, Gillemot L and Krishnamurthy S 2003 Quant. Finance 3 481
[14] Preis T, Golke S, Paul W and Schneider J J 2006 Europhys. Lett. 75 510
[15] Preis T, Golke S, Paul W and Schneider J J 2007 Phys. Rev. E 76 016108
[16] Bak P, Paczuski M and Shubik M 1997 Physica A 246 430
[17] Challet D and Stinchcombe R 2003 Quant. Finance 3 155
[18] Maslov S 2000 Physica A 278 571
[19] Maslov S and Mills M 2001 Physica A 299 234
[20] Stauffer D and Penna T J P 1998 Physica A 256 284
[21] Stauffer D and Penna T J P 1999 Physica A 271 496
[22] Lux T and Marchesi M 1999 Nature 397 498
[23] Laloux L, Cizeau P, Bouchaud J P and Potters M 1999 Phys. Rev. Lett. 83 1467
[24] Plerou V, Gopikrishnan P, Rosenow B, Amaral L A N and Stanley H E 1999 Phys. Rev. Lett. 83 1471
[25] O’Hara M 1997 Market Microstructure Theory (Malden, MA: Blackwell)
[26] Biais B, Hillion P and Spatt C 1995 J. Finance 50 1655
[27] Brunnermeier M and Pedersen L 2005 J. Finance 60 1825
[28] Bertsimas D and Lo A 1998 J. Financ. Markets 1 1
[29] Bank P and Baum D 2004 Math. Finance 14 1
[30] Landau D and Binder K 2005 A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge:

Cambridge University Press)
[31] van Meel J A, Arnold A, Frenkel D, Zwart S P and Belleman R G 2008 Mol. Simul. 34 259
[32] Köstler H, Schmid R, Rüde U and Scheit C 2008 Comput. Vis. Sci. 11 115
[33] Schneider J J and Kirkpatrick S 2006 Stochastic Optimization (Berlin: Springer)
[34] Dagum L and Menon R 1998 IEEE Comput. Sci. Eng. 5 46
[35] Gabriel E et al 2004 Open MPI: goals, concept and design of a next generation MPI implementation Proc.

11th European PVM/MPI Users’ Group Meeting (Budapest, Hungary) pp 97–104
[36] Tomov S, McGuigan M, Bennett R, Smith G and Spiletic J 2005 Comput. Graph. 29 71
[37] Stone J E, Phillips J C, Freddolino P L, Hardy D J, Trabuco L G and Schulten K 2007 J. Comput. Chem.

28 2618
[38] Susukita R et al 2003 Comput. Phys. Commun. 155 115
[39] Zwart S F P, Bellemana R G and Geldof P M 2007 New Astron. 12 641
[40] Bellemana R G, Bédorf J and Zwart S F P 2007 New Astron. 13 103
[41] Li W, Wei X and Kaufman A 2003 Vis. Comput. 19 444
[42] Anderson J A, Lorenz C D and Travesset A 2008 J. Comput. Phys. 227 5342
[43] Yanga J, Wang Y and Chen Y 2007 J. Comput. Phys. 221 799
[44] Preis T, Virnau P, Paul W and Schneider J J 2009 J. Comput. Phys. 228 4468
[45] Rost R J 2006 OpenGL Shading Language 2nd edn (Reading, MA: Addison-Wesley)
[46] Fernando R and Kilgard M J 2003 The Cg Tutorial: The Definitive Guide to Programmable Real-time

Graphics (Reading, MA: Addison-Wesley)
[47] NVIDIA CUDA Compute Unified Device Architecture, Programming Guide 2008 version 2.0 NVIDIA

Corporation (http://www.nvidia.com)
[48] ATI CTM Guide, Technical Reference Manual 2006 version 1.01 Advanced Micro Devices, Inc.

(http://www.amd.com)

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://dx.doi.org/10.1086/294632
http://dx.doi.org/10.1103/PhysRevLett.96.068701
http://dx.doi.org/10.1103/PhysRevLett.87.228701
http://dx.doi.org/10.1103/PhysRevLett.89.158701
http://dx.doi.org/10.1103/PhysRevLett.90.108102
http://dx.doi.org/10.1088/1469-7688/3/6/307
http://dx.doi.org/10.1209/epl/i2006-10139-0
http://dx.doi.org/10.1103/PhysRevE.76.016108
http://dx.doi.org/10.1016/S0378-4371(97)00401-9
http://dx.doi.org/10.1088/1469-7688/3/3/301
http://dx.doi.org/10.1016/S0378-4371(00)00067-4
http://dx.doi.org/10.1016/S0378-4371(01)00301-6
http://dx.doi.org/10.1016/S0378-4371(98)00223-4
http://dx.doi.org/10.1016/S0378-4371(99)00290-3
http://dx.doi.org/10.1038/17290
http://dx.doi.org/10.1103/PhysRevLett.83.1467
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.2307/2329330
http://dx.doi.org/10.1111/j.1540-6261.2005.00781.x
http://dx.doi.org/10.1016/S1386-4181(97)00012-8
http://dx.doi.org/10.1111/j.0960-1627.2004.00179.x
http://dx.doi.org/10.1080/08927020701744295
http://dx.doi.org/10.1007/s00791-007-0062-0
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1016/j.cag.2004.11.008
http://dx.doi.org/10.1002/jcc.20829
http://dx.doi.org/10.1016/S0010-4655(03)00349-7
http://dx.doi.org/10.1016/j.newast.2007.05.004
http://dx.doi.org/10.1016/j.newast.2007.07.004
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1016/j.jcp.2006.06.039
http://dx.doi.org/10.1016/j.jcp.2009.03.018
http://www.nvidia.com
http://www.amd.com
http://www.njp.org/

21

[49] NVIDIA GeForce GTX 280 Specifications 2008 NVIDIA Corporation (http://www.nvidia.com)
[50] Preis T, Paul W and Schneider J J 2008 Europhys. Lett. 82 68005
[51] Mandelbrot B and Hudson R 2004 The (mis)Behavior of Markets. A Fractal View of Risk, Ruin and Reward

(New York: Basic Books)
[52] Hurst H E 1951 Trans. Am. Soc. Civil Engin. 116 770
[53] Darbellay G A and Wuertz D 2000 Physica A 287 429
[54] Ausloos M 2000 Physica A 285 48
[55] Carbone A, Castelli G and Stanley H E 2004 Physica A 344 267
[56] Gu G F and Zhou W X 2009 Eur. Phys. J. B 67 585

New Journal of Physics 11 (2009) 093024 (http://www.njp.org/)

http://www.nvidia.com
http://dx.doi.org/10.1209/0295-5075/82/68005
http://dx.doi.org/10.1016/S0378-4371(00)00382-4
http://dx.doi.org/10.1016/S0378-4371(00)00271-5
http://dx.doi.org/10.1016/j.physa.2004.06.130
http://dx.doi.org/10.1140/epjb/e2009-00052-4
http://www.njp.org/

	1. Introduction
	2. GPU device architecture
	3. Hurst exponent
	4. Equilibrium autocorrelation
	5. Fluctuation pattern conformity
	6. Conclusion and outlook
	Acknowledgments
	Appendix. GPU source code
	References

